ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВАКУУМИРОВАНИЯ И НАГРЕВА МНОГОСЛОЙНЫХ СТАЛЬНЫХ ПАКЕТОВ ДЛЯ ПОЛУЧЕНИЯ ЛИСТОВЫХ МАТЕРИАЛОВ УЛЬТРАМЕЛКОЗЕРНИСТОЙ СТРУКТУРЫ

Э.А. Салманов С.Д. Скачков

elmar.salmanov.94@mail.ru seroe_pepsi@mail.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова	
Исследованы процессы вакуумирования и нагрева многослойных стальных пакетов для получения листовых материалов ультрамелкозернистой структуры. Изучено влияние температуры на степень вакуума при одновременном нагревании и	Композитные материалы, ультрамелкозернистая струк- тура, пакетная прокатка	
вакуумировании заготовки на этапе подготовки	Поступила в редакцию 12.07.2016	
материалов к прокатке	© МГТУ им. Н.Э. Баумана, 2016	

Введение. Высокие темпы экономического роста обусловили потребность в конструкционных материалах с повышенными механическими свойствами, поэтому в промышленности происходит интенсивное освоение производства металлических материалов ультрамелкозернистой структуры. Одним из наиболее эффективных и экономичных технологических процессов получения конструкционных материалов является метод прокатки.

Подробно рассмотрим прокатку многослойных материалов в вакууме. Использование этого метода позволяет снизить содержание газов в металле и защитить заготовки от окисления, а также улучшить свариваемость металлических заготовок. При пластической деформации в вакууме отсутствие окисных и адсорбированных пленок на контактных поверхностях металлов способствует их взаимодействию и получению качественного соединения. Известны эксперименты по изучению процессов, происходящих в герметичном пакете, при нагревании биметаллических пакетов сталей марок 08X18H10T и Ct3 [1]. В ходе экспериментов установлено, что в герметичном пакете без использования дополнительного разделительного слоя происходит обезуглероживание стали с образованием оксидов NiO, Cr_2O_3 , Fe_3O_4 и науглероживание стали 08X18H10T. Имеются данные о выделении газов азота и оксида углерода.

Целью настоящей работы является исследование влияния процесса вакуумирования герметичной капсулы с пакетом из 84 пластин при нагревании на степень вакуума, а также расчет оценочного количества выделившегося при нагреве газа.

Материалы и методы. В основе метода горячей прокатки, разработанного в МГТУ им. Н.Э. Баумана [2–4], для получения многослойных материалов ультрамелкозернистой структуры лежит чередование слоев стали, имеющих разное кристаллическое строение в условиях горячей обработки давлением. Схема технологического процесса прокатки многослойных материалов представлена на рис. 1.



Рис. 1. Схема технологического процесса прокатки многослойных материалов

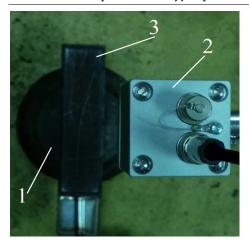

В качестве исходных материалов использовали стали марок 08X18H10 и 08кп. В соответствии с технологическим маршрутом получения многослойных материалов исходные пластины вырубают из холоднокатаного листа на гильотинных ножницах по 42 пластинки каждой марки стали, затем очищают поверхность [4–6]. Ширина пластин составляет 58 мм, длина — 236 мм, толщина — 0,5 мм. Очищенные пластины, чередуя, укладывают в пакет. На подготовленный пакет по боковой поверхности накладывают сварной шов, чтобы при прокатке слои не скользили относительно друг друга, после чего пакет помещают в капсулу (рис. 2).

Рис. 2. Капсула для пакета

Капсула представляет собой металлический контейнер с отверстием на одной из боковых поверхностей, к которому приварен фартук с трубкой. Такая конструкция позволяет осуществлять вакуумирование при помощи вакуумного насоса 2НВР-5ДМ и герметизацию заготовок на шовной машине МШ-1601УХЛ4. После вакуумирования фартук обрезают. Чтобы исключить сваривание наружной поверхности пакета с капсулой при прокатке используют жаропрочные обкладки.

Для проведения эксперимента были собраны по единой технологии четыре капсулы, которые подключали к вакуумному насосу для вакуумирования и одновременно подвергали нагреву на электрической чугунной конфорке КЭ-0,15.

Рис. 3. Общий вид экспериментальной установки:

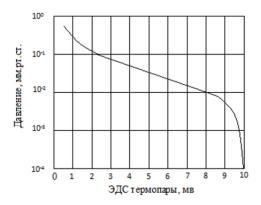

1 — электрическая чугунная конфорка; 2 — тепловизор; 3 — капсула

Рис. 4. Преобразователь манометрический термопарный ПМТ-2

Во время нагрева проводили измерение давления внутри капсулы и температуры на ее поверхности. Для бесконтактного измерения и наблюдения за изменением температуры в ходе эксперимента использовали установку с тепловизором Optis PI (рис. 3).

Для измерения давления в пакете использовали вакуумметр ионизационно-термопарный ВИТ-2, снабженный манометрическим термопарным преобразователем ПМТ-2 (рис. 4). Рабочий диапазон давления составил 1·10⁻³... ... 5 мм рт. ст., а диапазон изменения электродвижущей силы (ЭДС) термопары — 0...10 мВ (рис. 5) [7].

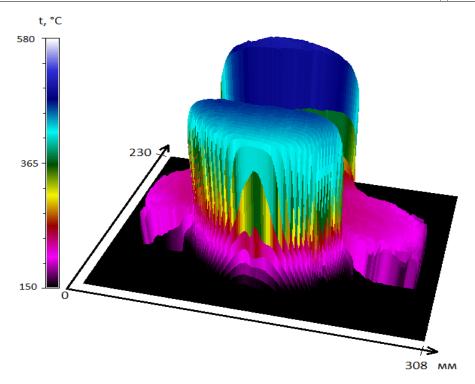


Рис. 5. Зависимость ЭДС термопары от давления

Сначала проводили вакуумирование заготовки без нагрева, одновременно нагревая отдельно стоящую электрическую чугунную конфорку до максимальной температуры 450 °C. После вакуумирования капсулу, подключенную к вакуумному насосу, установили на нагретую конфорку.

Результаты эксперимента. На этапе первоначального вакуумирования при комнатной температуре остаточное давление в капсуле составило $6.7 \cdot 10^{-7}$ МПа. В дальнейшем происходило нагревание капсулы, процесс которого представлен в виде графиков изменения температур на поверхности заготовки (рис. 6 и 7). Разница температур в середине капсулы и по ее краям составила 40 °C.

Процессы вакуумирования и нагрева представлены на рис. 8 в виде зависимости давления в герметичной капсуле от времени нагрева. На рисунке видно, что в течение 120 мин пакет одновременно подвергали вакуумированию и нагреву.

Рис. 6. Объемное изображение распределения температуры на поверхности заготовки

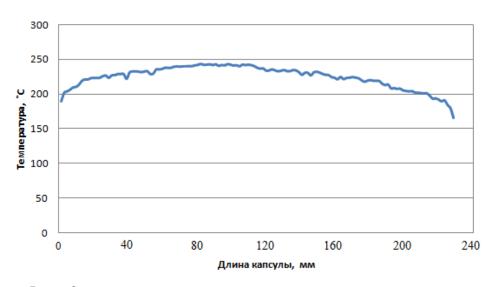


Рис. 7. Зависимость температуры поверхности заготовки от длины капсулы

Максимальное давление газов в капсуле $4,7 \cdot 10^{-6}$ МПа зафиксировано на 80-й мин (при температуре 250 °C), после чего до 120-й мин давление в капсуле снижалось, что обусловлено, по-видимому, менее интенсивным выделением газов, а в последующие 15 мин давление в пакете не менялось.

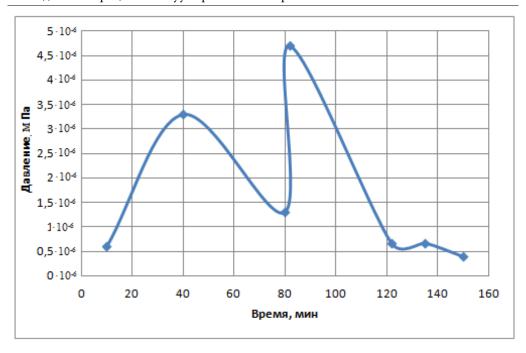


Рис. 8. Зависимость давления в герметичной капсуле от времени нагрева

В момент времени, соответствующий 130-й мин от начала нагревания, заготовку сняли с конфорки, при этом вакуумный насос не отключали. С течением времени давление в капсуле начало снижаться, т. е. степень вакуума повышалась по мере охлаждения: при температуре 180 °C значение давления составило $0,67\cdot10^{-6}$ МПа, при температуре 160 °C — $0,4\cdot10^{-6}$ МПа, после давление не менялось, при температуре 20 °C давление в капсуле вновь составило $0,67\cdot10^{-6}$ МПа.

Расчет оценочного количества выделившегося при нагреве газа. Проведем расчет при условии замкнутого объема в момент отключения вакуумного насоса от капсулы (путем пережатия шланга). Примем допущение использования уравнения состояния идеального газа PV = nRT (Менделеева — Клапейрона) для смеси реальных газов. Из экспериментальных данных выделим две точки, соответствующие условию наличия замкнутого объема: $P_1 = 3,4$ Па, $T_1 = 140$ °C и $P_2 = 4,7$ Па, $T_2 = 250$ °C. Подставим эти данные в уравнение Менделеева — Клапейрона и рассчитаем количество вещества для выделившегося при нагреве заготовки газа $\frac{n_2}{n_1} = 1,19$ (количество вещества в капсуле увеличилось на 11,9 %).

Проанализируем уравнения зависимости изобарного потенциала ΔZ_m^0 основных химических реакций от температуры. Результаты представим в виде таблицы.

Уравнение и значения изобарного потенциала ΔZ_m^0 для основных химических реакций

Номер		**	$\Delta Z_m^0 = \kappa a \pi / (\Gamma \cdot a \tau o M)$	
реак- ции	Реакция	Уравнение	293 K	543 K
1	$C + O_2 \rightarrow CO_2$	-94052-0,7T	-94257,1	-94432,1
2	$2C + O_2 \rightarrow 2CO$	-26416-21,4T	-32686,2	-38036,2
3	$3\text{CO}_2 + 4\text{Cr} \rightarrow 2\text{Cr}_2\text{O}_2 + 3\text{C}$	-257846+132,7T	-218964,9	-185789,9
4	$3CO + 2Cr \rightarrow Cr_2O_2 + 3C$	-190753+129,9T	-152692,3	-120217,3
5	$4CO + 3Fe \rightarrow Fe_3O_4 + 4C$	-161273+167,4T	-112224,8	-70374,8
6	$Ni + \frac{1}{2}O_2 \rightarrow NiO$	-57499+22,4T	-50935,8	-45335,8
7	$Ni + C \rightarrow CO + Ni$	31083-43,9T	18220,3	7245,3
8	$2Cr + \frac{1}{2}N_2 \rightarrow Cr_2N$	-25500+16,2T	-20753,4	-16703,4
9	$4H_2O + 3Fe \rightarrow Fe_3O_4 + 4H_2$	-6299-74,1T	-28010,3	-46535,3
10	$Na_2SiO_2 + CO_2 \rightarrow Na_2CO_3 + SiO_2$	-17048+33,8T	-7144,6	-1305,4
11	$FeO + CO \rightarrow Fe + CO_2$	-3400+4,6T	-2052,2	-902,2
12	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$	61500-6,9T	59478,3	57753,3
13	$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$	-17353-11,4T	-20693,2	-23543,2
14	$Al + \frac{1}{2}N_2 \rightarrow AlN$	-76500+24,7T	-69262,9	-63087,9
15	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	59109-61,8T	41001,6	25551,6
16	$2A1 + 3CO \rightarrow Al_2O_3 + 3C$	-320753+139,5T	-279879,5	-245004,5
17	$4A1 + 3C \rightarrow Al_4C_3$	-46700+0,14T	-46658,98	-46623,98
18	$2Al + Cr_2O_3 \rightarrow Al_2O_3 + 2Cr$	-130000+9,6T	-127187,2	-124787,2
19	$8Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe$	-799302+55,8T	-782952,6	-769002,6
20	$Ti + \frac{1}{2}N_2 \rightarrow TiN$	-80400+22,9T	-73690,3	-67965,3
21	$\frac{2}{\text{Ti} + C} \rightarrow \text{Ti}C$	-43900+2,7T	-43108,9	-42433,9
22	$Ti + \frac{1}{2}O_2 \rightarrow TiO$	-123900+23,3T	-117073,1	-111248,1

Выводы. В зависимости от времени нагрева по мере прогревания капсулы остаточное давление в ней увеличивается вследствие выделения газов, содержащихся в металле, а также реакции остаточного кислорода с углеродом, содержащимся в стали. Сравнение исходной и конечной величин давления, позволяет сделать вывод, что нагревание и одновременное вакуумирование капсулы способствует уменьшению содержания остаточных газов и позволяет повысить степень вакуума в герметичной капсуле.

Литература

- 1. Кобелев А.Г., Лысак В.И., Чернышов В.Н. и др. Производство слоистых композиционных материалов. М.: Интермет-Инжиниринг. 2002. 496 с.
- 2. Колесников А.Г., Мечиев Ш.Т., Панова И.Ю. Состояние и перспективы применения многослойных металлических заготовок // Заготовительные производства в машиностроении. 2008. № 1. С. 42–43.
- 3. Колесников А.Г., Плохих А.И., Комиссарчук Ю.С., Михальцевич И.Ю. Исследование особенностей формирования субмикро- и наноразмерной структуры в многослойных материалах методом горячей прокатки // МиТОМ. 2010. № 6. С. 44–49.
- 4. Колесников А.Г., Плохих А.И., Мечиев Ш.Т., Михальцевич И.Ю. Способ получения металлических листов со стабильной субмикро- и наноразмерной структурой Пат. РФ 2380234. Заявл. 08.08.2008.
- 5. *Арюлин С.Б.*, *Халипов И.В.* Получение многослойных композиционных материалов методом горячей прокатки // Заготовительные производства в машиностроении. 2013. № 7. С. 31–35.
- 6. Колесников А.Г., Плохих А.И., Шинкарев А.С., Миронова М.О. Прокатка стального многослойного материала // Заготовительные производства в машиностроении. 2013. № 8. С. 39–42.
- 7. Шешин Е.П. Основы вакуумной техники. М.: МФТИ. 2001. 124 с.

Салманов Эльмар Агакишиевич — студент кафедры «Оборудование и технологии прокатки» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Скачков Сергей Дмитриевич — студент кафедры «Оборудование и технологии прокатки» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — А.С. Шинкарев, канд. техн. наук, ассистент кафедры «Оборудование и технологии прокатки» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

STUDY OF VACUUMIZING AND HEAT PROCESSES OF MULTILAYER STEEL BLOCKS FOR PRODUCTON OF ULTRAFINE SHEET MATERIALS

E.A. Salmanov elmar.salmanov.94@mail.ru S.D. Skachkov seroe_pepsi@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study tested the processes of vacuumizing and heat of multilayer materials of steel blocks for production of ultrafine sheet materials. We also examined the effect of temperature on the degree of vacuum while heating and	2
vacuumizing the workpiece in preparing the materials	© Bauman Moscow State Technical
for rolling	University, 2016

References

- [1] Kobelev A.G., Lysak V.I., Chernyshov V.N. et al. Proizvodstvo sloistykh kompozitsionnykh materialov [Laminar composite production]. Moscow, Intermet-Inzhiniring Publ., 2002. 496 p. (in Russ.).
- [2] Kolesnikov A.G., Mechiev Sh.T., Panova I.Yu. Future trends of multilayer metallic blanks. Zagotovitel'nye proizvodstva v mashinostroenii [Blanking Productions in Mechanical Engineering], 2008, no. 1, pp. 42–43 (in Russ.).
- [3] Kolesnikov A.G., Plokhikh A.I., Komissarchuk Yu.S., Mikhal'tsevich I.Yu. A study of special features of formation of submicro- and nanosize structure in multilayer materials by the method of hot rolling, MiTOM, 2010, no. 6, pp. 44–49. (in Russ.). (Eng. version of journal: Metal Science and Heat Treatment, 2010, vol. 52, no. 5, pp. 273–278. DOI: 10.1007/s11041-010-9266-x)
- [4] Kolesnikov A.G., Plokhikh A.I., Mechiev Sh.T., Mikhal'tsevich I.Yu. Sposob polucheniya metallicheskikh listov so stabil'noy submikro- i nanorazmernoy strukturoy. Pat. RF 2380234. [Producing technique for metal sheet with stable submicro- and nanostructure. Patent RF 2380234]. From 08.08.2008. (in Russ.).
- [5] Aryulin S.B., Khalipov I.V. Preparation of multilayer composite materials by hot rolling. Zagotovitel'nye proizvodstva v mashinostroenii [Blanking Productions in Mechanical Engineering], 2013, no. 7, pp. 31–35 (in Russ.).
- [6] Kolesnikov A.G., Plokhikh A.I., Shinkarev A.S., Mironova M.O. Steel multilayer material rolling. Zagotovitel'nye proizvodstva v mashinostroenii [Blanking Productions in Mechanical Engineering], 2013, no. 8, pp. 39–42 (in Russ.).
- [7] Sheshin E.P. Osnovy vakuumnoy tekhniki [Basics of vacuum techniques]. Moscow, MIPT Publ., 2001. 124 p. (in Russ.).

Salmanov E.A. — student of the Department of Rolling equipment and technology, Bauman Moscow State Technical University, Moscow, Russian Federation.

Skachkov S.D. — student of the Department of Rolling equipment and technology, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — A.S. Shinkarev, Cand. Sci. (Eng.), Assist. Professor of the Department of Rolling equipment and technology, Bauman Moscow State Technical University, Moscow, Russian Federation.