ГЕНЕРАТОРНЫЕ СВОЙСТВА ГРАФЕНОВЫХ РЕЗОНАНСНО-ТУННЕЛЬНЫХ ДИОДОВ

А.Ю. Бельская

belskaya.asya@gmail.com

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Оценены возможности использования графеновых резонансно-туннельных диодов в качестве актив- ного элемента в высокочастотных генераторах. Исследована зависимость частоты и мощности тока от степени легирования графеновых элек- тродов, геометрии устройства, параллельности графеновых решеток. Полученные результаты указывают на теоретическую возможность созда-	Резонансно-туннельный диод, высокочастотный генератор, графен, гексагональный нитрид бора
ния генератора тока терагерцового диапазона на	Поступила в редакцию 14.12.2016
основе графеновых резонансно-туннельных диодов	© МГТУ им. Н.Э. Баумана, 2016

В современной микроволновой радиоэлектронике наблюдается устойчивая тенденция разработки устройств терагерцового диапазона. Кроме их малых размеров, пропорциональных длине волны, привлекает возможность использования новых активных элементов — диодов и транзисторов, микроэлектромеханических конструкций. Существенным препятствием для проектирования передатчиков и супергетеродинных приемников в этом диапазоне является отсутствие генераторов.

Не нашли широкого практического применения и резонансно-туннельные диоды. Их особенностью является наличие падающего участка на вольтамперной характеристике, что представляет интерес для проектирования генераторов и усилителей [1–3].

Перспективными устройствами для использования в качестве активного элемента в RLC-генераторах являются графеновые резонансно-туннельные диоды на различных опорных изолирующих подложках таких, как SiO₂ и SiC. Наиболее высокую подвижность зарядов имеет графен на подложке из гексагонального нитрида бора (h-BN), она достигает значений 275 000 см²/В·с при низкой температуре и 125 000 см²/В·с при комнатной температуре. Это связано с тем, что поверхность h-BN является плоской, с низкой плотностью заряженных примесей, не имеет оборванных связей и относительно инертна. Обладая той же атомной структурой, что и графен, и значением постоянной решетки на 1,8 % больше, h-BN становится очень перспективным элементом для использования в качестве изолирующего материала для разработки гетероструктур и приборов [4–6].

Рассмотрим подробнее исследование свойств графенового резонанснотуннельного диода (ГРТД) на подложке из h-BN с вертикальным расположением слоев. Конструкция такого диода и принципиальная схема представлены на рис. 1 [7].

Рис. 1. Конструкция ГРТД с параллельным расположением слоев: модель конструкции (*a*) и принципиальная схема резонансного контура (*б*)

Диод расположен на слое h-BN (светло-зеленый) и изолирующей подложке (фиолетовая). Конструкция состоит из двух слоев графена с омическими контактами в виде электродов (оранжевые), разделенных слоем h-BN (темно-зеленый) толщиной *d*. Нижняя (красная) и верхняя (синяя) графеновые решетки в общем случае могут быть непараллельными и смещенными на угол θ . Нижний (B) и верхний (T) графеновые слои в зоне туннелирования имеют площадь перекрытия A = 1 мкм² и малое поверхностное сопротивление (см. рис. 1).

Напряжение, приложенное между верхним и нижним слоями графена V_b , индуцирует поверхностный заряд в каждом слое и создает туннельный ток I_b (черные стрелки) через барьер h-BN между двумя парами омических контактов. Туннельный ток особенно чувствителен к величине угла θ .

Внешняя индуктивность L, поверхностное сопротивление графена R и емкость диода образуют колебательный контур, резонансная частота которого определяет частоту генерации на участке вольт-амперной характеристики (BAX) с отрицательным дифференциальным сопротивлением.

Электростатические характеристики диода опишем с помощью уравнения

$$eV_b = \mu_B - \mu_T - \varphi_b, \tag{1}$$

где $\varphi_b = eF_b d$; F_b — электрическое поле в барьере; e — величина заряда электрона; $\mu_{B,T}$ — два уровня Ферми.

Частотные характеристики ГРТД опишем следующим образом:

$$I_{b} = \frac{8\pi e}{\hbar} \sum_{k_{B}, k_{T}} |M|^{2} \left[f_{B} \left(E_{B} \right) - f_{T} \left(E_{T} \right) \right] \delta \left(E_{B} - E_{T} - \varphi_{b} \right).$$

$$\tag{2}$$

Суммирование проводят по всем начальным и конечным состояниям с волновыми векторами k_B, k_T , измеряемыми относительно ближайшей точки Дирака в нижнем слое, $\mathbf{K}^{\pm} = \left(\pm \frac{4\pi}{3a_0}, 0\right)$, где знак \pm характеризует две неэквивалентные точки Дирака в зоне Бриллюэна; a_0 — постоянная решетки графена, $a_0 = 2,46$ Å.

Функция Ферми в каждом электроде

$$f_{B,T}(E_{B,T}) = \left[1 + e^{(E_{B,T} - \mu_{B,T})/kT}\right]^{-1}.$$
(3)

Здесь $E_{B,T}$ — энергия электрона, $E_{B,T} = s_{B,T} \hbar \upsilon_F k_{B,T}$; υ_F — скорость, $\upsilon_F = 10^6 \text{ мс}^{-1}$; $s_{B,T}$ — уровни электронов в зоне проводимости (+) и валентной зоне (-) при температуре T = 300 K, $s_{B,T} = \pm 1$.

$$M = \Xi \gamma (\theta) g (\varphi_B \varphi_T) V_S (q - \Delta K),$$

где $\Xi = \xi e^{-\kappa d}$; ξ — константа нормализации, полученная в результате измерений I_b ; $\gamma(\theta)$ — интеграл пространственного наложения периодической части волновой функции; $g(\varphi_B \varphi_T)$ описывает электронную хиральность; V_s — потенциал упругого рассеяния; $q = k_B - k_T$.

Константа затухания волновой функции в барьере $\kappa = \sqrt{2m}\Delta_b / \hbar$, где высота барьера $\Delta_b = 1,5$ эВ; эффективная электронная масса в барьере $m = 0,5m_e$. Ток I(t) в контактах и внешней цепи рассчитывают путем решения уравнения непрерывности:

$$d\rho_{B,T} / dt = \pm (I_b - I) / A,$$

где знак +(-) для нижних (верхних) слоев графена (см. рис. 1).

Плотность легирования в каждом слое $\rho_{\text{BD}}\left(\rho_{\text{TD}}\right)$ связана с уравнением Пуассона

$$\in F_b = \rho_B - \rho_{BD} = -(\rho_T - \rho_{TD}),$$

где $\in = \in_0 \in_r$; \in_r — диэлектрическая проницаемость барьера, $\in_r = 3,9$. Напряжения на катушке индуктивности и резисторе V_L и V_R , определяют как $dI/dt = V_L/L$; $V_R = IR$ и $V = V_R + V_b + V_L$.

На рис. 2 приведена статическая ВАХ, рассчитанная для нелегированного устройства с $\theta = 0,9^\circ$ и $d = 1,3\,$ нм (4 слоя h-BN); при этом предполагаем, что к ГРТД приложено все напряжение источника питания $V_b \approx V$, а ток равен току источника питания ($I_b \approx I$). Зеленая кривая — усредненная по времени зависимость среднего тока от напряжения. На вставке представлена временная зави-

симость тока для напряжения смещения V = 0,48 В и частоты генерации 4,2 ГГц. Когда V находится в области отрицательного дифференциального сопротивления (0,55B < V < 0,8B), диапазон напряжения генерации на индуктивности за период колебания становится отличным от нуля. Это указывает на наличие самовозбуждения. Предполагается, что R не зависит от времени и может быть изменено путем изменения геометрии устройства, например уменьшения длины электродов.

Рис. 2. Статическая (синяя) и динамическая (зеленая) кривые ВАХ ($\theta = 0,9^{\circ}$, L = 140 нГн и R = 50Ом). Красная кривая — диапозон значений напряжения ΔV (правая шкала) в режиме стабильной генерации тока

Малосигнальный анализ позволяет рассчитать влияние *L*, *R* и формы ВАХ на частоту генерации:

$$f^{s} = f_{0} \sqrt{\left(1 - R / R_{N}\right) - Q_{N}^{-2} \left(1 - Q_{N}^{2} R / R_{N}\right)^{2} / 4},$$
(4)

где R_N — наибольшее отрицательное дифференциальное сопротивление в статической ВАХ; Q_N — добротность, $Q_N = R_N \sqrt{C/L}$; f_0 — резонансная частота контура, $f_0 = 1/2\pi \sqrt{LC}$.

Если R_N велико, то $f^s \approx f_0$. При заданном C (которое зависит от A и d) f_0 может быть увеличена путем уменьшения L.

Условием генерации является

$$(R/R_N - Q_N^2) > 0.$$
 (5)

Следовательно, R и форма ВАХ имеют важное значение для оптимизации высокочастотных (ВЧ) характеристик. На рис. 3 представлены зависимости максимальной частоты генерации от сопротивления диода $f_{max}(R)$ с наименее возможным значением L для возникновения автоколебаний с числом слоев N_L от двух до четырех. Сплошные кривые рассчитаны для значений R, полученных для ГРТД в настоящее время; пунктирные — для значений R, которые могут быть достигнуты в будущем путем модификации конструкций устройств, например, за счет уменьшения длины графена между областью туннелирования и омическими контактами или путем легирования электродов. Согласно графику для R = 50 Ом максимальная частота составляет 1,8 ГГц.

Рис. 3. Зависимости максимальной частоты генерации f_{\max} от сопротивления диода R: при $N_L = 4$ (*a*) и $N_L = 2$ (красная кривая), $N_L = 3$ (зеленая), $N_L = 4$ (синяя) (б)

Вставка на рис. 3, *а* демонстрирует, что частота $f_{\rm max}$ пропорциональна $R^{-0,505}$, что может быть получено путем приравнивания выражения (5) к нулю и подбором наименьшего значения *L* для данных *R*, R_N и *C*:

$$f_{\max}^{s} = \left(2\pi C\sqrt{RR_{N}}\right)^{-1} \propto R^{-0.5}.$$
(6)

Вставка на рис. 3, б отражает зависимость f_{max} от N_L при R = 50 Ом.

При уменьшении числа слоев N_L в туннельном барьере h-BN увеличивается ток в нижнем слое графена (примерно в 20 раз при удалении каждого слоя). Это приводит к уменьшению R_N и увеличению $f_{\rm max}$. Таким образом, уменьшение числа слоев h-BN дает существенное преимущество в $f_{\rm max}$ для всех R: максимальная частота генерации для устройства с $N_L = 2$ значительно выше, чем при $N_L = 4$ ($f_{\rm max} = 26$ ГГц для $N_L = 2$ и $f_{\rm max} = 1,8$ ГГц для $N_L = 4$).

На рис. 4, *а* приведены ВАХ, рассчитанные для $N_L = 2$ нелегированного (красная кривая) и асимметрично легированного устройства с плотностью легирования нижнего слоя $\rho_{BD} / e = 10^{13}$ см⁻² и верхнего слоя $\rho_{TD} / e = 0$ см⁻². При легировании резонансный пик наблюдается при более высоком напряжении смещения, чем при отсутствии, а величина пикового тока больше; соотношение пик–долина растет от 1,5 до 3,5. Стрелка показывает плоский участок, который возникает из-за квантового емкостного эффекта.

Сплошные кривые на рис. 4, δ — для значений R, полученных в настоящее время, пунктирные — для R, которые могут быть получены путем модификации конструкций устройства.

Рис. 4. ВАХ, рассчитанные для легированного (зеленая кривая, $\rho_{BD} / e = 10^{13} \text{ см}^{-2}$) и нелегированного (красная) устройств, $N_L = 2$ (*a*) и зависимость $f_{\text{max}}(R)$ для устройств, ВАХ которых представлены в части *a*

Общая емкость ГРТД определяется выражением:

$$C^{-1} = C_G^{-1} + C_Q^{-1},$$

где C_G — геометрическая емкость, $C_G = \epsilon_0 \epsilon_1 A/d$. Когда $\mu_{B,T}$ проходит через точку Дирака, квантовая емкость $C_Q \to 0$. На практике C_Q имеет малое значение и небольшую долю периода колебаний, и поэтому его влиянием на частоту генерации можно пренебречь.

Графики $f_{\max}(R)$ на рис. 4, б рассчитаны для нелегированного (красный) и легированного (зеленый) устройств, показывают предельную частоту генерации. Оно выше для всех R. На вставке видно, что f_{\max} возрастает с увеличением ρ_{BD}/e при R = 50 Ом; в 1,3 раза при $\rho_{BD}/e = 10^{13}$ см⁻² (до 32 ГГц вместо 26 ГГц).

На рис. 5, *а* показано влияние изменения θ на ВАХ. При возрастании θ положение пика тока смещается в сторону более высокого напряжения. При этом пик амплитуды тока уменьшается в десятки раз по мере увеличения θ . Кривые являются сплошными для значений R, полученных в настоящее время, пунктирными для значений R, которые могут быть получены путем модификации конструкций устройств. Для всех кривых $\rho_{TD}/e = 0$ см⁻².

Для нелегированных образцов отношение PVR возрастает с увеличением θ (рис. 5, *6*, вставка) и приближается к значению 3,4 при θ близком к 2°. Для легированных образцов ($\rho_{BD} / e = 10^{13}$ см⁻²) ток долины небольшой для всех θ , при этом соотношение пик–долина достаточно велико (рис. 5, *в*). На вставке: $R_N(\theta)$ для нелегированного (вверху) и легированного $\rho_{BD} / e = 10^{13}$ см⁻² (внизу) диодов. Следовательно, для нелегированых образцов при выравнивании слоев графена увеличивается частота генерации без снижения мощности.

с $\theta = 0,9^{\circ}$ (зеленая) при $\rho_{BD} / e = 10^{13}$ см⁻²

Установлено, что $R_N \propto \left(f_{\max}^s\right)^{-2}$. Частоты колебаний являются самыми высокими при $\theta = 0^\circ$ и $\rho_{BD} / e = 10^{13}$ см⁻².

На рис. 5, г показано, что идеальное выравнивание слоев графена может увеличить $f_{\rm max}$ примерно в 2 раза. Для R = 50 Ом, $f_{\rm max} = 65$ ГГц при $\theta = 0^{\circ}$ по сравнению с $f_{\rm max} = 32$ ГГц при $\theta = 0,9^{\circ}$.

Значения, полученные малосигнальным методом анализа на основании соотношения $R_N \propto \left(f_{\max}^s\right)^{-2}$ при малом R_N (черная кривая, см. рис. 5, *в*), доказывают, что для возбуждения колебаний необходимо подбирать напряжение смещения.

Выводы. Учитывая, что основными параметрами генератора являются максимальная частота генерации, генерируемая мощность (связанная с отношением PVR) и воспроизводимость конструкции (связанная с технологичностью), сформулируем результаты теоретического исследования свойств конструкции ГРТД на основе параллельного соединения двух слоев графена и прослойки h-BN. Для конструкции с параллельными слоями графена:

1) максимальная частота генерации возрастает с увеличением степени легирования нижнего слоя графена (например, в 1,3 раза при $\rho_{BD} / e = 10^{13}$ см⁻²);

2) максимальная частота генерации возрастает с уменьшением толщины h-BN;

3) пиковое значение тока и напряжение смещения статической ВАХ на порядок выше для легированного устройства;

4) при легировании резонансный пик наблюдается при более высоком напряжении смещения, чем при его отутствии;

5) при легировании отношение PVR растет;

6) отношение PVR меньше, чем в конструкции со смещенными (непараллельными) слоями графена;

7) мощность генерации составляет 10 мкВт при ρ_{BD} / e = 0 см⁻² и 18 мкВт при ρ_{BD} / $e = 10^{13}$ см⁻².

Для конструкции со смещенными на угол $\boldsymbol{\theta}$ (непараллельными) слоями графена:

1) максимальная частота генерации на порядок ниже, чем в конструкции с параллельными слоями графена;

2) для нелегированных образцов с увеличением θ от 0 до 2° отношение PVR возрастает и приближается к значению 3,4;

3) мощность генерации имеет порядок 26 мкВт при $\theta \!=\! 0^\circ$ и 3 мкВт при $\theta \!=\! 2^\circ.$

В обоих случаях предельная частота генерации увеличивается обратно пропорционально квадратному корню поверхностного сопротивления пленки графена. Максимальная частота генерации макета устройства не превышает 65 ГГц. Для продвижения в терагерцовый диапазон необходимо уменьшить поверхностное сопротивление графена до единиц и десятых долей Ома и идеально выровнять слои графена.

Литература

1. *Sollner T.C.L.G., Brown E.R., Goodhue W.D., Le H.Q.* Microwave and millimeter-wave resonant-tunnelling devices // The Lincoln Laboratory Journal. 1988. No. 1. P. 89–105.

2. Sun J.P., Haddad G., Mazumder P., Schulman J.N. Resonant tunneling diodes: models and properties // Proceedings of the IEEE. 1998. Vol. 86. No. 4. P. 641–660.

URL: http://ieeexplore.ieee.org/document/663541/ DOI: 10.1109/5.663541

3. Novoselov K.S. Nobel lecture. Graphene: materials in the flatland // Rev. Mod. Phys. 2011. Vol. 83. No. 3. P. 837–849.

URL: http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.837 DOI: 10.1103/RevModPhys.83.837 Генераторные свойства графеновых резонансно-туннельных диодов

4. A roadmap for graphene / K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert,

M.G. Schwab, K. Kim // Nature. 2012. Vol. 490. P. 192–200.

URL: http://www.nature.com/nature/journal/v490/n7419/full/nature11458.html DOI: 10.1038/nature11458

5. Ferrari A.C., Bonaccorso F., Fal'ko V.I., Novoselov K.S., et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems // Nanoscale. 2015. No. 7. P. 4598–4810.

URL: http://pubs.rsc.org/en/content/articlepdf/2015/nr/c4nr01600a DOI: 10.1039/C4NR01600A

6. Hung Nguyen V., Mazzamuto F., Bournel A., Dollfus P. Resonant tunnelling diodes based on graphene/h-BN heterostructure // J. Phys. D Appl. Phys. 2012. Vol. 45. No. 3. URL: http://iopscience.iop.org/article/10.1088/0022-3727/45/32/325104/meta DOI: 10.1088/0022-3727/45/32/325104

7. *Graphene*-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillator / J. Gaskell, L. Eaves, K.S. Novoselov, A. Mishchenko, A.K. Geim, T.M. Fromhold, M.T. Greenway // Appl. Phys. Lett. 2015. Vol. 107. No. 10.

URL: http://aip.scitation.org/doi/full/10.1063/1.4930230 DOI: 10.1063/1.4930230

Бельская Ася Юрьевна — студентка кафедры «Технологии приборостроения», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Н.В. Федоркова, канд. техн. наук., доцент, кафедры «Технологии приборостроения», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

GENERATOR PROPERTIES OF GRAPHENE RESONANT TUNNELING DIODES

A.Yu. Belskaya

belskaya.asya@gmail.com

Bauman Moscow State Technical Un	iversity, Moscow, Russian Federation
----------------------------------	--------------------------------------

Abstract	Keywords
The study evaluated the possibilities of using graphene resonant tunneling diodes as an active element in a	Resonant tunneling diode, high- frequency generator, graphene
high-frequency generator. We examine the dependence of the current frequency and power on the degree of	hexagonal boron nitride
graphene electrode doping, as well as the device geometry,	
show that there exists a theoretical possibility of creating	
a terahertz current generator based on graphene resonant	© Bauman Moscow State Technical
tunneling diodes	University, 2016

References

- [1] Sollner T.C.L.G., Brown E.R., Goodhue W.D., Le H.Q. Microwave and millimeter-wave resonant-tunnelling devices. *The Lincoln Laboratory Journal*, 1988, no. 1, pp. 89–105.
- Hung Nguyen V., Mazzamuto F., Bournel A., Dollfus P. Resonant tunnelling diodes based on graphene/h-BN heterostructure. *J. Phys. D Appl. Phys.*, 2012, vol. 45, no. 3. URL: http://iopscience.iop.org/article/10.1088/0022-3727/45/32/325104/meta DOI: 10.1088/0022-3727/45/32/325104
- [3] Sun J.P., Haddad G., Mazumder P., Schulman J.N. Resonant tunneling diodes: models and properties. *Proceedings of the IEEE*, 1998, vol. 86, no. 4, pp. 641–660. URL: http://ieeexplore.ieee.org/document/663541/ DOI: 10.1109/5.663541
- [4] Novoselov K.S. Nobel lecture. Graphene: materials in the flatland. *Rev. Mod. Phys.*, 2011, vol. 83, no. 3, pp. 837–849.
 URL: http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.837
 DOI: 10.1103/RevModPhys.83.837
- [5] Novoselov K.S., Fal'ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. *Nature*, 2012, vol. 490, pp. 192–200.
 URL: http://www.nature.com/nature/journal/v490/n7419/full/nature11458.html DOI: 10.1038/nature11458
- [6] Ferrari A.C., Bonaccorso F., Fal'ko V.I., Novoselov K.S., et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. *Nanoscale*, 2015, no. 7, pp. 4598–4810.
 URL: http://pubs.rsc.org/en/content/articlepdf/2015/nr/c4nr01600a
 DOI: 10.1039/C4NR01600A
- [7] Gaskell J., Eaves L., Novoselov K.S., Mishchenko A., Geim A.K., Fromhold T.M., Greenway M.T. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillator. *Applied Physics Letters*, 2015, vol. 107, no. 10.
 URL: http://aip.scitation.org/doi/full/10.1063/1.4930230 DOI: 10.1063/1.4930230

Belskaya A.Yu. — student of Instrument Engineering Technology Department, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — N.V. Fedorkova, Cand. Sc. (Eng.), Assoc. Professor of Instrument Engineering Technology Department, Bauman Moscow State Technical University, Moscow, Russian Federation.