|

Высокочастотные гравитационные волны бозонных звезд

Авторы: Николаева В.А.
Опубликовано в выпуске: #5(94)/2024
DOI:


Раздел: Физика | Рубрика: Астрофизика

Ключевые слова: гравитационные волны, бозонные звезды, скалярное поле, интерферометры Фабри — Перо

Опубликовано: 24.11.2024

Рассмотрены высокочастотные гравитационные волны двойной системы бозонных звезд на основе эффективной мульти-полевой модели. В рамках рассмотренной модели получена зависимость характеристик гравитационных волн от параметров данной системы. Также представлена оценка возможности регистрации высокочастотных гравитационных волн на основе гравитационно-оптического резонанса в интерферометрах Фабри — Перо. Проведены расчеты параметров детектора данного типа, необходимых для непосредственной регистрации высокочастотных гравитационных волн двойной системы бозонных звезд. Показано, что рассмотренный в данной работе детектор обладает высокой чувствительностью, большей, чем могут предложить другие детекторы высокочастотных гравитационных волн.



Литература

[1] Chatrchyan S. et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Eperiment at the LHC. Phys. Lett. B, 2012, vol. 716, pp. 30–61.

[2] Aad G. et al. Combined measurement of the Higgs boson mass from the H - yy and H - ZZ - 4` decay channels with the ATLAS detector using s = 7, 8 and 13 TeV pp collision data. Phys. Rev. Lett., 2023, vol.131, art. 251802. https://doi.org/10.1103/PhysRevLett.131.251802

[3] Lee J.W. Is dark matter a BEC or scalar field? J. Korean Phys. Soc., 2009, vol. 54, art. 2622. https://doi.org/10.3938/jkps.54.2622

[4] Aggarwal N. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Rel., 2021, vol. 24, no. 1, art. 4. https://doi.org/10.1007/s41114-021-00032-5

[5] Abbott R. et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Phys. Rev. X., 2023, vol.13, no. 4, art. 041039.

[6] Chervon S.V., Fabris J.C., Fomin I.V. Black holes and wormholes in f(R) gravity with a kinetic curvature scalar. Class. Quant. Grav., 2021, vol. 38, no. 11, art. 115005. https://doi.org/10.1088/1361-6382/abebf0

[7] Chervon S.V., Fomin I.V., Mayorova T.I., Khapaeva A.V. Cosmological parameters of f(R) gravity with kinetic scalar curvature. J. Phys. Conf. Ser., 2020, vol. 1557, art. 012016. https://doi.org/10.1088/1742-6596/1557/1/012016

[8] Naruko A., Yoshida D., Mukohyama S. Gravitational scalar-tensor theory. Class. Quant. Grav., 2016, vol. 33, no. 9, art. 09LT01. https://doi.org/10.48550/arXiv.1512.06977

[9] Bronnikov K.A., Rubin S.G. Black Holes, Cosmology and Extra Dimensions. London, World Scientific, 2013.

[10] Chandrasekhar S. The maximum mass of ideal white dwarfs. Astrophys. J., 1931, vol. 74, pp. 81–82.

[11] Rezzolla L., Most E.R., Weih L.R. Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett., 2017, vol. 852, no. 2, art. L25. https://doi.org/10.3847/2041-8213/aaa401

[12] Maggiore M. Gravitational Waves. Vol. 1. Theory and Experiments. Oxford, Oxford University Press, 2007.

[13] Hartle J.B. Gravity: an introduction to Einstein’s general relativity. Cambridge, Cambridge University Press, 2021.

[14] Giudice G.F. Hunting for Dark Particles with Gravitational Waves. JCAP, 2016, vol. 10, art. 001. https://doi.org/10.1088/1475-7516/2016/10/001

[15] Bauswein A., Janka H.Th. Measuring neutron-star properties via gravitational waves from binary mergers. Phys. Rev. Lett., 2012, vol. 108, art. 011101. https://doi.org/10.1103/PhysRevLett.108.011101

[16] Francesco M., De Pietri R., Feo A., L?ffler F. Spectral analysis of gravitational waves from binary neutron star merger remnants. Phys. Rev. D, 2017, vol. 96, art. 063011. https://doi.org/10.1103/PhysRevD.96.063011

[17] Gladyshev V.O., Morozov A.N. Low-frequency optical resonance in multiple-beam Fabry – Perot interferometer. Tech. Phys. Lett., 1993, vol. 19, no. 14, pp. 39–42.

[18] Rudenko V.N., Sazhin M.V. Laser interferometer as a gravitational wave detector. Sov. J. Quantum Electron., 1980, vol. 10, no. 11, pp. 1366–1372.

[19] Caprini C., Figueroa D.G. Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav., 2018, vol. 35, no. 16, art. 163001. https://doi.org/10.48550/arXiv.1801.04268

[20] Golyak I.S., Morozov A.N., Nazolin A.L. et al. Information-Measuring Complex to Detect High Frequency Gravitational Waves. Radio Engineering, 2021, vol. 2, pp. 13–23. https://doi.org/10.36027/rdeng.0221.0000190

[21] Morozov A.N., Golyak I.S., Fomin I.V., Chervon S.V. Detectors of high-frequency gravitational waves based on the gravitationaloptical resonance. Пространство, время и фундаментальные взаимодействия, 2022, no. 41, pp. 49–61. https://doi.org/10.17238/issn2226-8812.2022.4.49-61

[22] Ferdman R.D. PSR J1913+1102: a pulsar in a highly asymmetric and relativistic double neutron star system. IAU Symp., 2017, vol. 337, pp. 146–149. https://doi.org/10.1017/S1743921317009139

[23] Abbott B.P. et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 2017, vol. 119, no. 16, art. 161101. https://doi.org/10.1103/PhysRevLett.119.161101

[24] Quirola-Vasquez J., Bauer F.E., Jonker P.G. et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2000–2014). Astron. Astrophys., 2022, vol. 663, art. A168. https://doi.org/10.1051/0004-6361/202243047

[25] Goryachev M., Campbell W.M., Heng I.S., Galliou S., Ivanov E.N., Tobar M.E. Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna. Phys. Rev. Lett., 2021, vol. 127, no. 7, art. 071102. https://doi.org/10.1103/PhysRevLett.127.071102

[26] Chen X. Distortion of Gravitational-Wave Signals by Astrophysical Environments, 2021, pp. 1–22. https://doi.org/10.48550/arXiv.2009.07626

[27] Ito A., Ikeda T., Miuchi K., Soda J. Probing GHz gravitational waves with graviton-magnon resonance. Eur. Phys. J. C, 2020, vol. 80, no. 3, art. 179.  https://doi.org/10.1140/epjc/s10052-020-7735-y

[28] Nishizawa A. et al. Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100-MHz. Class. Quant. Grav., 2008, vol. 25, art. 225011. https://doi.org/10.1088/0264-9381/25/22/225011

[29] Gemme G., Chincarini A., Parodi R., Bernard P., Picasso E. Parametric gravity wave detector. Workshop on Electromagnetic Probes of Fundamental Physics, 2001, pp. 75–83. https://doi.org/10.48550/arXiv.gr-qc/0112021