High-frequency gravity waves of the boson stars
Authors: Nikolaeva V.A. | |
Published in issue: #5(94)/2024 | |
DOI: | |
Category: Physics | Chapter: Astrophysics |
|
Keywords: gravity waves, boson stars, scalar field, Fabry-Perot interferometer |
|
Published: 24.11.2024 |
The paper considers high-frequency gravity waves of the boson stars binary system based on the effective multi-field model. Within the framework of the considered model, dependence of the gravity waves characteristics on the system parameters is obtained. Besides, the paper presents an assessment of a possibility to register the high-frequency gravity waves based on the gravity-optical resonance in the Fabry-Perot interferometers. Parameters of this type of detector required in direct registration of the high-frequency gravity waves of the boson stars binary system are computed. The paper shows that the detector considered in this work has high sensitivity, which is greater than could be proposed by other detectors of the high-frequency gravity waves.
References
[1] Chatrchyan S. et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Eperiment at the LHC. Phys. Lett. B, 2012, vol. 716, pp. 30–61.
[2] Aad G. et al. Combined measurement of the Higgs boson mass from the H - yy and H - ZZ - 4` decay channels with the ATLAS detector using s = 7, 8 and 13 TeV pp collision data. Phys. Rev. Lett., 2023, vol.131, art. 251802. https://doi.org/10.1103/PhysRevLett.131.251802
[3] Lee J.W. Is dark matter a BEC or scalar field? J. Korean Phys. Soc., 2009, vol. 54, art. 2622. https://doi.org/10.3938/jkps.54.2622
[4] Aggarwal N. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Rel., 2021, vol. 24, no. 1, art. 4. https://doi.org/10.1007/s41114-021-00032-5
[5] Abbott R. et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Phys. Rev. X., 2023, vol.13, no. 4, art. 041039.
[6] Chervon S.V., Fabris J.C., Fomin I.V. Black holes and wormholes in f(R) gravity with a kinetic curvature scalar. Class. Quant. Grav., 2021, vol. 38, no. 11, art. 115005. https://doi.org/10.1088/1361-6382/abebf0
[7] Chervon S.V., Fomin I.V., Mayorova T.I., Khapaeva A.V. Cosmological parameters of f(R) gravity with kinetic scalar curvature. J. Phys. Conf. Ser., 2020, vol. 1557, art. 012016. https://doi.org/10.1088/1742-6596/1557/1/012016
[8] Naruko A., Yoshida D., Mukohyama S. Gravitational scalar-tensor theory. Class. Quant. Grav., 2016, vol. 33, no. 9, art. 09LT01. https://doi.org/10.48550/arXiv.1512.06977
[9] Bronnikov K.A., Rubin S.G. Black Holes, Cosmology and Extra Dimensions. London, World Scientific, 2013.
[10] Chandrasekhar S. The maximum mass of ideal white dwarfs. Astrophys. J., 1931, vol. 74, pp. 81–82.
[11] Rezzolla L., Most E.R., Weih L.R. Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett., 2017, vol. 852, no. 2, art. L25. https://doi.org/10.3847/2041-8213/aaa401
[12] Maggiore M. Gravitational Waves. Vol. 1. Theory and Experiments. Oxford, Oxford University Press, 2007.
[13] Hartle J.B. Gravity: an introduction to Einstein’s general relativity. Cambridge, Cambridge University Press, 2021.
[14] Giudice G.F. Hunting for Dark Particles with Gravitational Waves. JCAP, 2016, vol. 10, art. 001. https://doi.org/10.1088/1475-7516/2016/10/001
[15] Bauswein A., Janka H.Th. Measuring neutron-star properties via gravitational waves from binary mergers. Phys. Rev. Lett., 2012, vol. 108, art. 011101. https://doi.org/10.1103/PhysRevLett.108.011101
[16] Francesco M., De Pietri R., Feo A., L?ffler F. Spectral analysis of gravitational waves from binary neutron star merger remnants. Phys. Rev. D, 2017, vol. 96, art. 063011. https://doi.org/10.1103/PhysRevD.96.063011
[17] Gladyshev V.O., Morozov A.N. Low-frequency optical resonance in multiple-beam Fabry – Perot interferometer. Tech. Phys. Lett., 1993, vol. 19, no. 14, pp. 39–42.
[18] Rudenko V.N., Sazhin M.V. Laser interferometer as a gravitational wave detector. Sov. J. Quantum Electron., 1980, vol. 10, no. 11, pp. 1366–1372.
[19] Caprini C., Figueroa D.G. Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav., 2018, vol. 35, no. 16, art. 163001. https://doi.org/10.48550/arXiv.1801.04268
[20] Golyak I.S., Morozov A.N., Nazolin A.L. et al. Information-Measuring Complex to Detect High Frequency Gravitational Waves. Radio Engineering, 2021, vol. 2, pp. 13–23. https://doi.org/10.36027/rdeng.0221.0000190
[21] Morozov A.N., Golyak I.S., Fomin I.V., Chervon S.V. Detectors of high-frequency gravitational waves based on the gravitationaloptical resonance. Пространство, время и фундаментальные взаимодействия, 2022, no. 41, pp. 49–61. https://doi.org/10.17238/issn2226-8812.2022.4.49-61
[22] Ferdman R.D. PSR J1913+1102: a pulsar in a highly asymmetric and relativistic double neutron star system. IAU Symp., 2017, vol. 337, pp. 146–149. https://doi.org/10.1017/S1743921317009139
[23] Abbott B.P. et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 2017, vol. 119, no. 16, art. 161101. https://doi.org/10.1103/PhysRevLett.119.161101
[24] Quirola-Vasquez J., Bauer F.E., Jonker P.G. et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2000–2014). Astron. Astrophys., 2022, vol. 663, art. A168. https://doi.org/10.1051/0004-6361/202243047
[25] Goryachev M., Campbell W.M., Heng I.S., Galliou S., Ivanov E.N., Tobar M.E. Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna. Phys. Rev. Lett., 2021, vol. 127, no. 7, art. 071102. https://doi.org/10.1103/PhysRevLett.127.071102
[26] Chen X. Distortion of Gravitational-Wave Signals by Astrophysical Environments, 2021, pp. 1–22. https://doi.org/10.48550/arXiv.2009.07626
[27] Ito A., Ikeda T., Miuchi K., Soda J. Probing GHz gravitational waves with graviton-magnon resonance. Eur. Phys. J. C, 2020, vol. 80, no. 3, art. 179. https://doi.org/10.1140/epjc/s10052-020-7735-y
[28] Nishizawa A. et al. Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100-MHz. Class. Quant. Grav., 2008, vol. 25, art. 225011. https://doi.org/10.1088/0264-9381/25/22/225011
[29] Gemme G., Chincarini A., Parodi R., Bernard P., Picasso E. Parametric gravity wave detector. Workshop on Electromagnetic Probes of Fundamental Physics, 2001, pp. 75–83. https://doi.org/10.48550/arXiv.gr-qc/0112021