|

Software implementation of a special module for the study of Venus atmosphere using two spacecraft

Authors: Zubko V.A., Belyaev A.A.
Published in issue: #12(41)/2019
DOI: 10.18698/2541-8009-2019-12-555


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: SPICE NAIF, ballistic navigation software, programming, study of Venus atmosphere, radio visibility, translucence zones, Venus, Python, object-oriented programming
Published: 19.12.2019

The article presents the implementation of a special module for calculating the intervals of translucence of Venus atmosphere and determining the communication windows between two spacecraft. The expediency is investigated of using the navigation-auxiliary software and computer complex SPICE NAIF. Technical aspects of the software module implementation in the Python programming language are considered. The software implementation module is compared using the navigation-auxiliary software and computer complex SPICE NAIF and without using it. A comparative analysis is made of the software that implements the calculation of intervals of translucence of Venus atmosphere. The effectiveness has been proved of the use of the navigation and auxiliary software and computer complex SPICE NAIF in solving applied ballistics tasks requiring the use of computer technology.


References

[1] Betanov V.V., Koryanov V.V. The concept of generalization of structural properties of measuring tasks when providing navigation and ballistic support for spacecraft. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2018, no. 7(700), pp. 92–99. DOI: 10.18698/0536-1044-2018-7-92-99 URL: http://izvuzmash.ru/catalog/avroc/insp/1566.html (in Russ.).

[2] Betanov V.V., Yanchik A.G. Navigatsionno-ballisticheskoe obespechenie ispytaniy i primeneniya kosmicheskikh apparatov [Navigation and ballistic support of spacecraft tests and application]. Moscow, VA RVSN Publ., 1993 (in Russ.).

[3] Anfimov I.A., Ivanov N.M., et al. Special aspects of navigation and ballistic support of control on “Mir” station at the stage of its flight finish. Kosmonavtika i raketostroenie, 2001, vol. 25, pp. 11–32 (in Russ.).

[4] Tyulin A.E., Betanov V.V., Yurasov V.S., et al. Navigatsionno-ballisticheskoe obespechenie poleta raketno-kosmicheskikh sredstv. Kn. 2. [Navigation and ballistic support of spacecraft. Vol. 2. Moscow, Radiotekhnika Publ., 2018 (in Russ.).

[5] Tyulin A.E., Betanov V.V., Kobzar’ A.A. Navigatsionno-ballisticheskoe obespechenie poleta raketno-kosmicheskikh sredstv. Kn. 1 [Navigation and ballistic support of spacecraft. Vol. 1]. Moscow, Radiotekhnika Publ., 2018 (in Russ.).

[6] Betanov V.V., Koryanov V.V. Generalization of structural properties of observability and identification in problems of navigation and ballistic support of spacecraft control. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2019, no. 4. DOI: 10.18698/2308-6033-2019-4-1872 URL: http://engjournal.ru/catalog/arse/adb/1872.html (in Russ.).

[7] Lysenko L.N. Vneshnyaya ballistika [External ballistic]. Moscow, Bauman MSTU Publ., 2018 (in Russ.).

[8] Ivanov N.M., Lysenko L.N. Ballistika inavigatsiya kosmicheskik happaratov [Ballistics and navigation of spacecraft].Moscow, Drofa Publ., 2004 (in Russ.).

[9] Ledkov A.A., Abbakumov A.S., Nazarov V.N. [Visualization software pack for SPICE system]. Fundamental’nye i prikladnye kosmicheskie issledovaniya. Tez. dokl. [Fundamental and Applied Research. Coll. abs.]. Moscow, 2011 IKI RAS Publ., 2011, pp. 50 (in Russ.).

[10] Eysmont N.A., Zasova L.V., Simonov A.V., et al. VENERA-D mission scenario and trajectory. Vestnik NPO im. S.A. Lavochkina, 2018, no. 4, pp. 11–18 (in Russ.).

[11] Koryanov V.V., Kazakovtsev V.P. Osnovy teorii kosmicheskogo poleta. Ch. 2 [Fundamentals of space flight theory. Vol. 2]. Moscow, Bauman MSTU Publ., 2014 (in Russ.).

[12] Zubko V.A., Belyaev A.A. Study of libration points in the Sun – Venus system in order to form the orbital system for the study of the Venus atmosphere. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2019, no. 8. DOI: 10.18698/2541-8009-2019-8-508 URL: http://ptsj.ru/catalog/arse/adbmc/508.html (in Russ.).

[13] Betanov V.V., Larin V.K. Using a systematic approach to solving the problematic issues of functioning of the automated complex of programs for ballistic and navigational support of GNSS spacecraft missions. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-space device engineering and information systems], 2016, vol. 3, no. 1, pp. 3–10 (in Russ.).

[14] Betanov V.V., Larin V.K. Concept of development of basic engineering model for ballistic structure of unmanned spacecraft. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-space device engineering and information systems], 2016, vol. 3, no. 4, pp. 65–73 (in Russ.).

[15] Tyulin A.E., Betanov V.V. Letnye ispytaniya kosmicheskikh ob’’ektov. Opredelenie i analiz dvizheniya po eksperimental’nym dannym [Flight test of spacecraft. Motion detection and analysis using experimental data]. Moscow, Radiotekhnika Publ., 2016 (in Russ.).

[16] The SPICE toolkit. naif.jpl.nasa.gov: website. URL: https://naif.jpl.nasa.gov/naif/toolkit.html (accessed: 15.08.2019).