|

Numerical simulation of the oxygen-methane mixture combustion products supersonic jet outflow from the low-thrust rocket engine nozzle taking into account variability in their thermal physical properties

Authors: Taran K.A.
Published in issue: #10(87)/2023
DOI: 10.18698/2541-8009-2023-10-946


Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture

Keywords: numerical simulation, low-thrust rocket engine, combustion products, oxygen, methane, computational hydraulic gas dynamics, supersonic flow
Published: 10.12.2023

Oxygen-methane propellant pair combustion products (CP) supersonic jet outflow from the low-thrust rocket engine (LTRE) was numerically simulated taking into account the CP thermophysical properties dependence on temperature. The Terra software program was used to calculate the CP thermodynamic parameters for the combustion chamber pressure ranging from 1 to 3 MPa. Polynomial dependences of the CP specific heat capacity, thermal conductivity and dynamic viscosity coefficients on temperature were determined and graphically presented based on data obtained in the Terra software program. The high-temperature CP outflow from a model LTRE chamber was numerically simulated in the ANSYS Fluent software package by solving a system of the Reynolds-averaged conservation equations for mass, momentum and energy. Numerical calculations took into account variability in the CP thermophysical properties.


References

[1] Kozlov A.A., Vorob’ev A.G., Boronik I.N. Zhidkostnye raketnye dvigateli maloy tyagi [Liquid rocket engines]. Moscow, MAI Publ., 2013, 208 p. (In Russ.).

[2] Egorychev V.S., Sulinov A.V. Zhidkostnye raketnye dvigateli maloy tyagi i ikh kharakteristiki [Low-thrust liquid rocket engines and their characteristics]. Samara, SGAU Publ., 2014, 128 p. (In Russ.).

[3] Bregvadze D.T., Gabidulin O.V., Gurkin A.A., Zabolot’ko I.A. Usage of oxygen-and-methane propellant in liquid-propellant rocket engines. Politekhnicheskiy molodezhnyy zhurnal, 2017, no. 12 (17). (In Russ.). http://doi.org/10.18698/2541-8009-2017-12-205

[4] Salich V.L., Shmakov A.A., Vaulin S.D. Zhidkostnye raketnye dvigateli maloy tyagi [Liquid rocket engines]. Chelyabinsk, YuUrGU Publ., 2006, 52 p. (In Russ.).

[5] Kovalev K.E., Fedotova K.V., Vorozheeva O.A. Computational study of the system efficiency of supplying components in the model low-thrust rocket engine on oxygen-methane. Engineering Journal: Science and Innovation, 2022, iss. 10. (In Russ.). http://doi.org/10.18698/2308-6033-2022-10-2217

[6] Aref’ev K.Yu., Fedotova K.V., Krikunova A.I., Panov V.A. Mathematical and physical simulation of the cross-flow velocity pulsation effect on the flame structure during the diffusion mode of methane combustion. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2020, no. 2 (89), pp. 65–84. (In Russ.). https://doi.org/10.18698/1812-3368-2020-2-65-84

[7] Filatov E.I. Kurs lektsiy po gazovoy dinamike [Course of lectures on gas dynamics]. Kazan, Kazanskiy universitet Publ., 2022, 138 p. (In Russ.).

[8] Avramenko M.I. O modeli turbulentnosti [About the turbulence model]. Snezhinsk, RFYaTs – VNIITF Publ., 2010, 102 p. (In Russ.).

[9] Vasil’ev A.P., Kudryavtsev V.M., Kuznetsov V.A., Kurpatenkov V.D., Obel’nitskiy A.M., Polyaev V.M., Poluyan B.Ya. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley [Fundamentals of the theory and calculation of liquid rocket engines]. Moscow, Vysshaya shkola Publ., 1993, 38 p. (In Russ.).

[10] Dobrovol’skiy M.V. Zhidkostnye raketnye dvigateli [Liquid rocket engines]. Moscow, BMSTU Press, 2005, 488 p. (In Russ.).