Gas turbine chp plants usiing solid municipal waste gasification products
Authors: Selnitsyn A.S. | |
Published in issue: #1(18)/2018 | |
DOI: 10.18698/2541-8009-2018-1-240 | |
Category: Ecology and Industrial Safety |
|
Keywords: gasification, recycling, gas turbine engine, gas turbine plant, utilization, renewable energy sources, solid municipal waste |
|
Published: 11.01.2018 |
The article centers around the problems of solid municipal waste (SMW) utilization. As a technological solution, the study introduces an effective method of SMW utilization by preliminary sorting, so that the secondary raw materials could be extracted for recycling and subsequent gasification. Firstly, we reviewed and analyzed low-power plants. Secondly, we substantiated the choice of gas turbine plants (GTP) as a converter of synthesis-gas chemical energy in electric and thermal energy. Finally, we did a comparative analysis of the schemes operating on SMW gasification products of a conventional low-power GTP, as well as a GTP with a changed sequence of processes. The results of the research suggest that synthesis-gas dry purification at GTP electric power 300 kW, pressure increase degree 4.5, temperature in the combustion chamber 1173 K allows for the increase in electrical efficiency of the GTP with the changed sequence of processes by 6% in comparison with wet cleaning.
References
[1] Rogoff M.J., Screve, F. Waste to energy technologies and project implementation. 2nd ed. UK, Noyes Publ., 2011.
[2] Malyshevskiy A.F. Obosnovanie vybora optimal’nogo sposoba obezvrezhivaniya tverdykh bytovykh otkhodov zhilogo fonda v gorodakh Rossii [Rationale for the choice of optimal method of disposal of solid waste residential fund in the Russian cities]. Federal’naya sluzhba po nadzoru v sfere prirodopol’zovaniya [Federal service for supervision in the sphere of nature]. Available at: http://rpn.gov.ru/sites/all/files/users/rpnglavred/filebrowser/docs/doklad_po_tbo.pdf (accessed 05.03.2017).
[3] Federal’naya sluzhba gosudarstvennoy statistiki [Russian Federal state statistics service]. Available at: http://www.gks.ru (accessed 05.03.2017).
[4] Obshchemirovoy ob"em vybrosov metana i vozmozhnosti ego sokrashcheniya [The global emission of methane and possibility of its reduction. Global Methane Initiative (GMI). Available at: https://www.globalmethane.org/documents/analysis_fs_rus.pdf (accessed 05.03.2017).
[5] Podlesnaya T.A. Analiz effektivnosti i optimizatsiya parametrov GTU s reaktorom-gazifikatorom tverdykh bytovykh, promyshlennykh otkhodov i nizkosortnykh tverdy [Analysis of efficiency and optimization of parameters of the gas turbine with the reactor-gasifier solid household and industrial waste and low grade solid]. Avtoreferat diss. kand. tekh. nauk [Cand. tech. sci. diss. abstr.]. Moscow, MGTU im. N.E. Baumana, 2008. 16 p. (in Russ.).
[6] Danilova S.K., Tumashev R.Z. The gas turbine engine-based power technology plant using wood waste gasification products. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya [Machines and Plants: Design and Exploiting], 2016, no. 4, pp. 1–13 (in Russ.). DOI: 10.7463/aplts.0416.0846815
[7] Ivanov V.L. Gas-turbine energy-transducer for a solid domestic and industrial waste recycling plant by gasification. Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i innovacii” [El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2012, iss. 10 (in Russ.). DOI: 10.18698/2308-6033-2012-10-399 Available at: http://engjournal.ru/eng/catalog/machin/energy/399.html
[8] Analiz mirovogo opyta razvitiya peredovykh tekhnologiy v teploenergetike [The analysis of world experience of development of advanced technologies in heat power engineering]. Modernizatsiya elektroenergetiki Rossii na period do 2020 goda [Modernization of power industry of Russia for the period till 2020]. Available at: http://nnhpe.spbstu.ru/wpcontent/uploads/2015/01/Analiz_mirovogo_opyta_razviti_tehnologiy.pdf (accessed 05.03.2017).
[9] Micro Turbine CHP. Applications for Oil and Gas Industry. Capstone Turbine Corporation, 2008.
[10] Kunte B. Thermodynamic, economic and emissions analysis of a micro gas turbine cogeneration system operating on biofuels. Benjamin Kunte. Guaratinguetá, 2015.
[11] Bohn D. Micro gas turbine and fuel cell – a hybrid energy conversion system with high potential. Micro Gas Turbines, 2005, pp. 13-1–13-46.
[12] Do Nascimento M.A.R., de Oliveira R.L., dos Santos E.C., Gomes E.E.B., Dias F.L.G., Velásques E.I.G., Carrillo R.A.M. Micro gas turbine engine: A review. In progress in gas turbine performance. N.Y., USA. 2013.
[13] Tsanev S. V., Burov V. D., Pustovalov P. A. To the question of carotidal Brayton cycle gas turbine power plants. Energosberezhenie i vodopodgotovka [Energy and Water], 2010, no. 6, pp. 2–6 (in Russ.).
[14] Molyakov V.D, Tumashev R.Z. Justification of layouts and parameters of highperformance gas turbine units for smal power engineering. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. of Higher Educational Institutions. Маchine Building], 2012, no. 10, pp. 52–58 (in Russ.).
[15] Gusarov V. A., Kulagin, Y. V. Application of gas turbine power generators in agriculture. Vestnik VIESKh [VIESH Institute’ Herald], 2012, no. 8, vol. 3, pp. 63–65 (in Russ.).
[16] Morozenko M.I., Chernyaev S.I., Popova E.V. Morozenko D.N., Kareva E.O. Generator gas characteristics research with steam plasma gasification of municipal solid waste. Uspekhi sovremennogo estestvoznaniya [Advances in Current Natural Sciences], 2016, no. 5, pp. 141–147 (in Russ.).
[17] Zagretdinov R.S., Nikishin M S., Senachin P.K. Gasification of solid domestic wastes. Proc. of Russian conf. with international participation “Combustion of fuels: theory, experiment, applications”. Novosibirsk, November 16–18, 2015. Institute of Thermophysics SB RAS (in Russ.).
[18] Tumashev R.Z., Bodrov N.G. Cogeneration gas-turbine plant running on oil-well gas with heavy hydrocarbons high content. Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i innovacii” [El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2012, iss. 10 (in Russ.). DOI: 10.18698/2308-6033-2012-10-401 Available at: http://engjournal.ru/eng/catalog/machin/energy/401.html
[19] Mikhal’tsev V.E., Molyakov V.D. Raschet parametrov tsikla pri proektirovanii gazoturbinnykh dvigateley i kombinirovannykh ustanovok [Cycle parameters calculation in designing of gas turbine engines and combined plants]. Moscow, MGTU im. N.E. Baumana Publ., 2014. 58 p.
[20] Molyavko M.A., Chalova O.B. Korroziya metallov [Corrosion of metals]. Ufa, UGNTU Publ., 2008. 100 p.
[21] Tumashev R.Z., Shchegolev N.L., Kulakov D.M. Coal mine methane utilization in gas turbine units for electricity and heat production. Bezopasnost’ v tekhnosfere [Safety in Technosphere], 2015, vol. 4, no. 5, pp. 41–48 (in Russ.). DOI: 10.12737/16963
[22] Osipov M.I., Tumashev R.Z., Molyakov V.D. Improving low power gas turbine using a fuel gas of low pressure. Tr. Mezhdunar. nauch.-praktich. konf. “Malaya energetika-2003” [Proc. Int. Sci.-Pract. Conf. Small-Scale Power Generation-2004], Moscow, 2004, pp. 113–116 (in Russ.).
[23] Kholshchevnikov K.V., Emin O.N., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin [Theory and calculation of aircraft bladed machines]. Moscow, Mashinostroenie Publ., 1986.