Using the tight-binding model to derive a dispersion relation for graphene energy
Authors: Mosin M.A. | |
Published in issue: #4(9)/2017 | |
DOI: 10.18698/2541-8009-2017-4-77 | |
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics |
|
Keywords: carbon nanotubes, graphene, graphene conductivity, tight-binding model, dispersion relation for energy, Bloch functions, Brillouin zones, Dirac points |
|
Published: 10.04.2017 |
We solve the problem of accounting for varying graphene-based nanostructure parameters by means of conducting numerical simulations. To solve the Schrödinger equation, we used the tight-binding model as an alternative to molecular dynamics simulation. We describe implementing this method for the case of π electrons in a graphene layer. We derive a dispersion relation for graphene energy. It is possible to use the results presented to determine the band structure of single-walled carbon nanotubes and to study their electronic properties.
References
[1] Radushkevich L.V., Lukyanovich V.M. On the structure of carbon formed by the thermal decomposition of carbon monoxide (CO) to the contact with iron. Russ. J. Phys. Chem., 1952, vol. 26, pp. 88.
[2] Iijima S. Helical microtubules of graphitic carbon // Nature. 1991, vol. 354, no. 6348, pp. 56–58. URL: https://www.nature.com/nature/journal/v354/n6348/pdf/354056a0.pdf DOI: 10.1038/354056a0
[3] Pop E., Mann D.A., Goodson K.E., Dai H. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. Journal of Applied Physics, 2007, vol. 101, no. 9, pp. 093710. URL: http://aip.scitation.org/doi/10.1063/1.2717855 DOI: 10.1063/1.2717855
[4] Kuroda M.A., Leburton J.P. Joule heating induced negative differential resistance in free-standing metallic carbon nanotubes. Applied Physics Letters, 2006, vol. 89, no. 10, pp. 103102. URL: http://aip.scitation.org/doi/10.1063/1.2345244 DOI: 10.1063/1.2345244
[5] Morgan C., Misiorny M., Metten D., Heedt S., Schäpers T., Schneider C.M., Meyer C. Im-pact of tunnel-barrier strength on magnetoresistance in carbon nanotubes. Physical Review Applied, 2016, vol. 5, no. 5, pp. 054010. URL: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.5.054010 DOI: 10.1103/PhysRevApplied.5.054010
[6] Biesheuvel P.M., Bazant M.Z. Analysis of ionic conductance of carbon nanotubes. Physical Review E, 2016, vol. 94, no. 5, pp. 050601. URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.050601 DOI: 10.1103/PhysRevE.94.050601
[7] Morimoto T., Ichida M., Ikemoto Yu., Toshiya O. Temperature dependence of plasmon resonance in single-walled carbon nanotubes. Physical Review B, 2016, vol. 93, no. 19, pp. 195409. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.195409 DOI: 10.1103/PhysRevB.93.195409
[8] Mylvaganam K., Zhang L.C. Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon, 2004, vol. 42, no. 10, pp. 2025–2032. URL: http://www.sciencedirect.com/science/article/pii/S000862230400260X DOI: 10.1016/j.carbon.2004.04.004
[9] Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, vol. 381, no. 6584, pp. 678–680. URL: https://www.nature.com/nature/journal/v381/n6584/abs/381678a0.html DOI: 10.1038/381678a0
[10] Montes E., Schwingenschlögl U. Nanotubes based on monolayer blue phosphorus. Physical Review B, 2016, vol. 94, no. 3, pp. 035412. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.035412 DOI: 10.1103/PhysRevB.94.035412
[11] Tsuchikawa R., Heligman D., Blue B.T., Zhang Z.Y., Ahmadi A., Mucciolo E.R., Hone J., Ishigami M. Scattering strength of potassium on a carbon nanotube with known chirality. Physical Review B, 2016, vol. 94, no. 4, pp. 045408. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.045408 DOI: 10.1103/PhysRevB.94.045408
[12] Saito R. Physical properties of carbon nanotubes. London, Imperial college press. 1998. 272 p.
[13] Collins P.G., Hersam M., Arnold M., Martel R., Avouris Ph. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Physical Review Letters, 2001, vol. 86, no. 14, pp. 3128. URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.3128 DOI: 10.1103/PhysRevLett.86.3128
[14] Kreupl F., Graham A.P., Duesberg G.S, Steinhögl W., Liebau M., Unger E., Hönlein W. Carbon nanotubes in interconnect applications. Microelectronic Engineering, 2002, vol. 64, no. 1-4, pp. 399–408. URL: http://www.sciencedirect.com/science/article/pii/S0167931702008146 DOI: 10.1016/S0167-9317(02)00814-6
[15] Graham A.P., Duesberg G.S., Seidel R., Liebau M., Unger E., Kreupl F., Hönlein W. Towards the integration of carbon nanotubes in microelectronics. Diamond & Related Materials, 2004, vol. 13, no. 4-8, pp. 1296–1300. URL: http://www.sciencedirect.com/science/article/pii/S0925963503004576 DOI: 10.1016/j.diamond.2003.10.080
[16] White C.T., Robertson D.H., Mintmire J.W. Helical and rotational symmetries of nanoscale graphitic tubules. Physical Review B, 1993, vol. 47, no. 9, pp. 5485. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.5485 DOI: 10.1103/PhysRevB.47.5485
[17] Agrawal P.M., Sudalayandia B.S., Raff L.M., Komanduria R. Molecular dynamics (MD) simulations of the dependence of C–C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT). Computational Materials Science, 2008, vol. 41, no. 4, pp. 450–456. URL: http://www.sciencedirect.com/science/article/pii/S0927025607001322 DOI: 10.1016/j.commatsci.2007.05.001
[18] Ashcroft N.W., Mermin N.D. Solid state physics. Philadelphia, Saunders College Publishing. 1976. 272 p.
[19] Datta S. Quantum transport: Atom to transistor. New York, Cambridge University Press. 2013. 417 p.