|

A system for measuring the amplitude-phase characteristics of ultrashort pulses at a 1.9 μm wavelength

Authors: Vanyushin M.V., Vlasov D.S., Voronets A.I.
Published in issue: #6(47)/2020
DOI: 10.18698/2541-8009-2020-6-619


Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Laser and opto-electronic systems

Keywords: laser, ultrashort pulses, frequency-resolved optical gating, mid-infrared band, second harmonic generation, measuring the amplitude-phase characteristic, autocorrelation of pulse, spectrogram
Published: 29.06.2020

This work is devoted to the realization of a method for measuring the amplitude-phase characteristics of ultrashort laser pulses, called the frequency-resolved optical gating. The paper considers the implementation of the method through second harmonic generation and compares the pulse parameters obtained using this method and the measurement of the signal by a spectrometer and autocorrelator. The purpose of this work is to implement a frequency-resolved optical gating method for measuring the amplitude-phase characteristics of ultrashort laser pulses with a wavelength of 1.9 microns. This work is important because of the lack of commercially available devices for measuring these characteristics at a wavelength of 1.9 microns.


References

[1] Donodin A., Voropaev V., Lazarev V., et al. Femtosecond thulium-doped fiber-ring laser for mid-IR spectroscopic breath analysis. Saratov Fall Meeting 2018: Laser Physics, Photonic Technologies, and Molecular Modeling, 2019, art. 11066. DOI: https://doi.org/10.1117/12.2520721

[2] Donodin A., Xie S., Voropaev V., et al. Supercontinuum generation in a as 2 S 3-Silica nanospike waveguide pumped by tm-doped fiber laser. CLEO/Europe-EQEC, 2019. DOI: https://doi.org/10.1109/CLEOE-EQEC.2019.8871929

[3] Kryukov P.G. Ultrashort-pulse lasers. Kvantovaya elektronika, 2001, vol. 31, no. 2, pp. 95–119. (in Russ.). (Eng. version: Quantum Electron., 2001, vol. 31, no. 2, pp. 95–119. DOI: https://doi.org/10.1070/QE2001v031n02ABEH001906)

[4] Diels J.C.M., Fontaine J.F., McMichael I.C., et al. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt., 1985, vol. 24, no. 9, pp. 1270–1282. DOI: https://doi.org/10.1364/AO.24.001270)

[5] Manzoni C. Ultrashort pulse characterization. URL: https://osa.zoom.us/rec/share/xMkpf-Cu0HtJZ43ozWjeeKAoJsfJaaa82iQWqPoPxRqideYyvKFk2i25rSqx9qXV?startTime=1586962717000 (accessed: 15.03.2020).

[6] Barakat R., Newsam G. Necessary conditions for a unique solution to two dimensional phase recovery. J. Math. Phys., 1984, vol. 25, no. 11, pp. 3190–3193. DOI: https://doi.org/10.1063/1.526089

[7] Trebino R., Kane D.J. Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating. J. Opt. Soc. Am. A, 1993, vol. 10, no. 5, pp. 1101–1111. DOI: https://doi.org/10.1364/JOSAA.10.001101

[8] Kryukov P.G. Femtosekundnye impul’sy. Vvedenie v novuyu oblast’ lazernoy fiziki [Femtosecond pulses. Introduction into new field of laser physics]. Moscow, Fizmatlit Publ., 2008 (in Russ.).

[9] Bagaev S.N., Vatnik S.M., Maiorov A.P., et al. The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals. Kvantovaya elektronika, 2000, vol. 30, no. 4, pp. 310–314 (in Russ.). (Eng. version: Quantum Electron., 2000, vol. 30, no. 4, pp. 310–314. DOI: https://doi.org/10.1070/QE2000v030n04ABEH001713)