Stereoscopic spectral filter for researching micro-objects

Authors: Batshev V.I., Bulygina N.A.
Published in issue: #7(60)/2021
DOI: 10.18698/2541-8009-2021-7-713

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Laser and opto-electronic systems

Keywords: stereoscopic lens, micro-object, acousto-optic filter, spectroscopy, biprism, microscopy, three-dimensional image, aberration study
Published: 23.07.2021

The article is devoted to the development of a stereoscopic video spectrometer, which allows registering three-dimensional spectral images of objects at high speed, high spatial and spectral resolution. An acousto-optic filter was selected as a spectral element. The problems arising in the design of optical systems for such filters are analyzed. A paraxial optical system of a compact spectrometer using a biprism for the simultaneous formation of images of the observed object from two angles on one matrix radiation detector has been developed. The assessment of the image quality is carried out and the factors influencing it are analyzed. A general direction for improving the optical system to improve its characteristics is proposed.


[1] Hu Z., Luo H., Du Y., et al. Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping. Opt. Express, 2013, vol. 21, no. 10, pp. 11808–11818. DOI: https://doi.org/10.1364/OE.21.011808

[2] Batshev V.I., Machikhin A.S., Gorevoy A.V., et al. Miniature stereoscopic objective for measuring geometric parameters of poorly accessible technical objects. Opticheskiy zhurnal, 2019, vol. 86, no. 6, pp. 45–49. DOI: https://doi.org/10.17586/1023-5086-2018-86-06-45-49 (in Russ.). (Eng. version: J. Opt. Technol., 2019, vol. 86, no. 6, pp. 362–366. DOI: https://doi.org/10.1364/JOT.86.000362)

[3] Probst T., Maninis K.K., Chhatkuli A., et al. Automatic tool landmark detection for stereo vision in robot-assisted retinal surgery. IEEE Robot. Autom. Lett., 2018, vol. 3, no. 1, pp. 612–619. DOI: https://doi.org/10.1109/LRA.2017.2778020

[4] Keller K., State A. A single-imager stereoscopic endoscope. Proc. SPIE, 2011, vol. 7964, art. 79641Z. DOI: https://doi.org/10.1117/12.873011

[5] Hu Y., Chen Q., Tao T., et al. Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope. Meas. Sci. Technol., 2017, vol. 28, no. 4, art. 045004. DOI: https://doi.org/10.1088/1361-6501/aa5a2dm

[6] Machikhin A.S., Pozhar V.E. Stereoscopic 3-dimensional spectral imaging systems based on a single acousto-optical tunable filter. J. Phys.: Conf. Ser., 2015, vol. 661, art. 012041. DOI: https://doi.org/10.1088/1742-6596/661/1/012041

[7] Zhang S., ed. Handbook of 3D machine vision. Optical metrology and imaging. CRC Press, 2016. 403 p.

[8] Genovese K., Casaletto L., Rayas J.A., et al. Stereo-Digital Image Correlation (DIC) measurements with a single camera using a biprism. Opt. Lasers Eng., 2013, vol. 51, no. 3, pp. 278–285. DOI: https://doi.org/10.1016/j.optlaseng.2012.10.001

[9] Qian B., Lim K.B. Image distortion correction for single-lens stereo vision system employing a biprism. J. Electron. Imaging, 2016, vol. 25, no. 4, art. 043024. DOI: https://doi.org/10.1117/1.JEI.25.4.043024

[10] Wu L., Zhu J., Xie H., et al. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: systematic error analysis and correction. Opt. Lasers Eng., 2016, vol. 87, pp. 129–138. DOI: https://doi.org/10.1016/j.optlaseng.2016.02.006

[11] Chao T.H., Lu T.T., Davis S.R., et al. Monolithic liquid crystal waveguide Fourier transform spectrometer for gas species sensing. Proc. SPIE, 2011, vol. 8055, art. 805506. DOI: https://doi.org/10.1117/12.886146

[12] Hu C., Xie P., Huo S., et al. A liquid crystal variable retarder-based reflectance difference spectrometer for fast, high precision spectroscopic measurements. Thin Solid Films, 2014, vol. 571-3, pp. 543–547. DOI: https://doi.org/10.1016/j.tsf.2013.12.034

[13] Yariv A., Yeh P. Optical waves in crystals. Wiley, 1984. (Russ. ed.: Opticheskie volny v kristallakh. Moscow, Mir Publ., 1987.)

[14] Rusinov M.M. Tekhnicheskaya optika [Technical optics]. Leningrad, Mashinostroenie Publ., 1979 (in Russ.).

[15] Machikhin A., Batshev V., Pozhar V. Aberration analysis of AOTF-based spectral imaging systems. J. Opt. Soc. Am., 2017, vol. 34, no. 7, pp. 1109–1113. DOI: https://doi.org/10.1364/JOSAA.34.001109