Identification of parameters of non-viscous body deformation models by experimental creep curves
Authors: Izotov I.V. | |
Published in issue: #7(36)/2019 | |
DOI: 10.18698/2541-8009-2019-7-498 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body |
|
Keywords: creep, deformation, operational life, creep models, creep tests, damage mechanisms, approximation of creep equations, finite element creep calculation |
|
Published: 29.07.2019 |
This article presents the determination of the coefficients for the equations of two different creep models on the basis of creep experiments conducted earlier. The possibility of approximation of these equations for more complex loading conditions was established. The results obtained show that the Norton law, which is widespread for the approximation of creep, gives poor results in cases of load changes on the sample. At the same time, a law based on hyperbolic functions can significantly improve the accuracy of the estimation of the creep process development. The application of the obtained formulas and coefficients should lead to a more reliable prediction of the life of structures operating under conditions of high temperatures and loads.
References
[1] Danilov V.L., Zarubin S.V. Deformation and destruction analysis of ingot. Izvestiya Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 1985, no. 1, pp. 25–28 (in Russ.).
[2] Malinin N.N., ed. Issledovanie polzuchesti metallov pri rastyazhenii [Study on metal creep under tension]. Moscow, Bauman MSTU Publ., 1997 (in Russ.).
[3] Bondar’ V.S., Danshin V.V., Kostin A.I. Approximation of plasticity functionals of elastic-plastic processes theory in non-isothermal loading under creep conditions. Izvestiya MGTU MAMI, 2012, vol. 2, no. 2, pp. 341–345 (in Russ.).
[4] Agakhi K.A., Kuznetsov V.N., Lokoshchenko A.M., et al. Simulation of creep process on the basis of observed data approximation. Mashinostroenie i inzhenernoe obrazovanie, 2011, no. 2, pp. 52–57 (in Russ.).
[5] Shesterikov S.A. Izbrannye Trudy [Selected works]. Moscow, MSU Publ., 2007 (in Russ.).
[6] Myachenkov V.I., ed. Raschety na prochnost’. Vyp. 33 [Strength calculations. Iss. 33]. Moscow, Izd-vo Mashinostroenie, 1993 (in Russ.).
[7] Danilov V.L., Zarubin S.V. Numerical simulation of destruction front movement in solidifying body. Izvestiya RAN. MTT, 1994, no. 1, pp. 80–85 (in Russ.).
[8] Brown G.R., Evans R.W., Wilshire B. Exponential descriptions of normal creep curves. Scripta Metall., 1986, vol. 20, no. 6, pp. 855–860. DOI: 10.1016/0036-9748(86)90454-0 URL: https://www.sciencedirect.com/science/article/pii/0036974886904540
[9] Collins J.A. Damage mechanics of materials and structures. Wiley, 1981.
[10] Padalkin B.V. Matematicheskoe modelirovanie protsessov avariynogo deformirovaniya elementov konstruktsiy AES v usloviyakh kratkovremennoy polzuchesti. Avtoref. diss. kand. tekh. nauk [Mathematical modelling of emergency deformation of construction elements. Abs. kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 1996 (in Russ.).
[11] Boyle J.T., Spence J. Stress analysis for creep. Butterworth, 1983.
[12] Linnik Yu.V. Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoy teorii obrabotki nablyudeniy [Least squares method and fundamentals of mathematic-statistic theory of observation analysis]. Moscow, Fizmatgiz Publ., 1958 (in Russ.).