Experimental solution of the Buquoy problem
Authors: Domnyshev A.A. | |
Published in issue: #12(41)/2019 | |
DOI: 10.18698/2541-8009-2019-12-553 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body |
|
Keywords: Buquoy problem, chain, variable mass system, variable composition system, Meshcherskiy equation, Newton’s second law, damped oscillations, fluid resistance |
|
Published: 12.12.2019 |
The article presents the results of an experiment on solving the Buquoy problem of chain motion under the action of a constant force applied to its end. An original technique was used in the experiments, according to which the movement of the chain was studied in liquid (water), and the buoyancy force of the float attached to the chain was used as a constant force. Such a conduction of experiments made it possible to reveal the damped nature of the oscillations of the float-chain system when the system is displaced relative to the equilibrium position. To interpret the experimental data, we used the classical solution of the Buquoy problem. The differential equation of chain motion as a system with variable mass (variable composition) under the action of constant force is solved by numerical methods. A comparison of theoretical and experimental data is made. The assumptions used to obtain the equations of motion, accepted in chain mechanics, are discussed.
References
[1] Meshcherskiy I.V. Motion equation for a point of variable mass in general. Izv. S-Peterburg. politekhn. in-ta, 1904, vol. 1, no. 1-2, pp. 77–148 (in Russ.).
[2] von Buquoy G. Analytische Bestimmung des Gesetzes der virtuellen Geschwindigkeiten in mechanischer und statischer Hinsicht. Leipzig, Breitkopf und Hartel, 1812.
[3] von Buquoy G. Weitere Entwickelung und Anwendung des Gesetzes der virtuellen Geschwindigkeiten in mechanischer und statischer Hinsicht. Leipzig, Breitkopf und Hartel, 1814.
[4] von Buquoy G. Exposition d’un nouveau principe general de dynamique, dont le principe des vitesses ´virtuelles n’est qu’un cas particulier. Paris, V Courcier Publ., 1815.
[5] Cayley A. On a class of dynamical problems. Proc. Royal Soc. Lond., 1857, vol. 8, pp. 506–511. DOI: 10.1098/rspl.1856.0133 URL: https://royalsocietypublishing.org/doi/10.1098/rspl.1856.0133
[6] Panovko Ya.G. Mekhanika deformiruemogo tverdogo tela. Sovremennye kontseptsii, oshibki i paradoksy [Deformable solid mechanics. Modern conceptions, mistakes and paradoxes]. Moscow, Nauka Publ., 1985 (in Russ.).
[7] Meshcherskiy I.V. Raboty po mekhanike tel peremennoy massy [Works on variable-mass body mechanics]. Moscow, Gos. izd. tekhniko-teoreticheskoy literatury Publ., 1952 (in Russ.).
[8] Šima V., Podolsky J., Buquoy’s problem. Eur. J. Phys., 2005, vol. 26, pp. 1037–1045. DOI: 10.1088/0143-0807/26/6/011 URL: https://iopscience.iop.org/article/10.1088/0143-0807/26/6/011
[9] Virga EG. Chain paradoxes. Proc. R. Soc. A, 2015, vol. 471, art. 20140657. DOI: 10.1098/rspa.2014.0657 URL: https://royalsocietypublishing.org/doi/full/10.1098/rspa.2014.0657
[10] Putilov K.A. Kurs fiziki. T. 1 [Physics course. Vol. 1]. Moscow, Fizmatgiz Publ., 1963 (in Russ.).