|

Research of materials for the physical model of the prostate gland with adjacent tissues

Authors: Barkhatova S.I., Belikov N.V.
Published in issue: #11(40)/2019
DOI: 10.18698/2541-8009-2019-11-548


Category: Medical sciences | Chapter: Medical equipment and devices

Keywords: physical model, adipose tissue, prostate gland, uniaxial stretching, Young’s modulus, tensile strength, ultrasound instrument, laparoscopic prostatectomy
Published: 08.11.2019

When conducting laparoscopic prostatectomy, there is a risk of damage to blood vessels and nerves, which can have a negative impact on the most important functions of the genitourinary system, therefore, the designed systems for minimally invasive surgery should be tested on physical models. This paper considers materials that can be used for physical modeling of the prostate gland and surrounding tissues. For some of them, Young’s modulus, maximum elongation under tension, and tensile strength were experimentally determined. The influence of the amplitude of oscillations of an ultrasonic instrument on the rate of destruction of biological tissue is investigated.


References

[1] Comley K., Fleck N.A. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct., 2010, vol. 47, no. 21, pp. 2982–2990. DOI: 10.1016/j.ijsolstr.2010.07.001 URL: https://www.sciencedirect.com/science/article/pii/S0020768310002465

[2] Phipps S., Yang T.H., Habib F.K., et al. Measurement of the mechanical characteristics of benign prostatic tissue: a novel method for assessing benign prostatic disease. Urology, 2005, vol. 65, no. 5, pp. 1024–1028. DOI: 10.1016/j.urology.2004.12.022 URL: https://www.sciencedirect.com/science/article/pii/S0090429504014827

[3] Krouskop T.A., Wheeler T.M., Kallel F., al. Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging, 1998, vol. 20, no. 4, pp. 260–274. DOI: 10.1177/016173469802000403 URL: https://journals.sagepub.com/doi/10.1177/016173469802000403

[4] Dubrovskiy V.I., Fedorova V.N. Biomekhanika [Biomechanics]. Moscow, Vlados-press Publ., 2003 (in Russ.).

[5] Hoyt K., Castaneda B., Zhang M., et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark., 2008, vol. 4, no. 4-5, pp. 213–225. DOI: 10.3233/CBM-2008-44-505 URL: https://content.iospress.com/articles/cancer-biomarkers/dma-a538

[6] Samani A., Zubovits J., Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol., 2007, vol. 52, no. 6, pp. 1565–1576. DOI: 10.1088/0031-9155/52/6/002 URL: https://iopscience.iop.org/article/10.1088/0031-9155/52/6/002

[7] McAnearney S. The effects of Young’s modulus on predicting prostate deformation for MRI -guided interventions. In: Computational Biomechanics for Medicine. Springer, 2011, pp. 39–49.

[8] Zhang M., Nigwekar P., Castaneda B. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med. Biol., vol. 34, no. 7, pp. 1033–1042. DOI: 10.1016/j.ultrasmedbio.2007.11.024 URL: https://www.sciencedirect.com/science/article/abs/pii/S0301562907006229

[9] Negrini N.C., Bonnetier M., Giatsidis G., et al. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater., 2019, vol. 87, pp. 61–75. DOI: 10.1016/j.actbio.2019.01.018 URL: https://www.sciencedirect.com/science/article/pii/S1742706119300388

[10] Tytgat L., Vagenende M., Declercq H., et al. Synergistic effect of κ-carrageenan and gelatin blends towards adipose tissue engineering. Carbohydr. Polym., 2018, vol. 189, pp. 1– 9. DOI: 10.1016/j.carbpol.2018.02.002 URL: https://www.sciencedirect.com/science/article/pii/S0144861718301401

[11] Mukhomor A.I. Sonoelastography in complex transrectal ultrasound prostate examination at identification of cancer at early stages. Ukraїna. Zdorov’ya natsії, 2013, no. 3, pp. 75–80 (in Russ.).

[12] Lamblin G., Mayeur O., Giraudet G. Pathophysiological aspects of cystocele with a 3D finite elements model. Arch. Gynecol. Obstet., 2016, vol. 294, no. 5, pp. 983–989. DOI: 10.1007/s00404-016-4150-6 URL: https://link.springer.com/article/10.1007/s00404-016-4150-6

[13] Dimitriadi S.N. Early continence recovery in patients with radical prostatectomy. Klinicheskaya praktika, 2011, no. 1, pp. 35–40 (in Russ.).

[14] Bhattarai A., Staat M. Modelling of soft connective tissues to investigate female pelvic floor dysfunctions. Comput. Math. Method. M., 2018, vol. 2018, art. 9518076. DOI: 10.1155/2018/9518076 URL: https://www.hindawi.com/journals/cmmm/2018/9518076/

[15] Vonavkova T., Horny L., Kulvajtova M. Uniaxial tensile test of perivascular adipose tissue. Bull. Appl. Mechan., 2014, vol. 10, no. 36, pp. 11–14.

[16] Osipov L.V. Technology of elastography in ultrasound diagnostics (review). Meditsinskiy alfavit, 2013, vol. 3-4, no. 21, pp. 5–21 (in Russ.).

[17] Lackey D.E., Burk D.H., Ali M.R., et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab., 2014, vol. 306, no. 3, pp. 233–246. DOI: 10.1152/ajpendo.00476.2013 URL: https://www.physiology.org/doi/full/10.1152/ajpendo.00476.2013

[18] Zykin B.I., Postnova N.A., Medvedev M.E. Elastography: anatomy of the method. Promeneva diagnostika, promeneva terapiya, 2012, no. 2-3, pp. 107–113 (in Russ.).

[19] Tukhbatullin M.G., Galeeva Z.M., Bastrakova A.E. Ul’trazvukovaya elastografiya [Ultrasound elastography]. V: Ekhografiya v diagnostike zabolevaniy vnutrennikh i poverkhnostno raspolozhennykh organov [In: echography in diagnostics of internal and superficial organs diseases]. Kazan’, Meditsinskaya kniga Publ., 2016, pp. 119–130 (in Russ.).

[20] Nikolenko V.N., Kossovich L.Yu., Fomkina O.A., et al. Arteria strength properties of the adult brain base at the first adult stage. Angiologiya i sosudistaya khirurgiya [Angiology and Vascular Surgery], 2008, vol. 14, no. 3, pp. 123–124 (in Russ.).

[21] Mit’kov V.V., Vasil’yeva A.K., Mit’kova M.D. Shear wave ultrasound elastography in prostate cancer diagnosis. Ul’trazvukovaya i funktsional’naya diagnostika [Ultrasound and Functional Diagnostics], 2012, no. 5, pp. 18–29 (in Russ.).

[22] Alkhouli N., Mansfield H., Green J., et al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Psychol., 2013, vol. 305, no. 12, pp. E1427-E1435. DOI: 10.1152/ajpendo.00111.2013 URL: https://www.physiology.org/doi/full/10.1152/ajpendo.00111.2013

[23] Alkhouli N., Mansfield J., Green E., e t al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Physiol. Endocrinol. Metab., 2013, vol. 305, no. 12, pp. E1427–E1435. DOI: 10.1152/ajpendo.00111.2013 URL: https://www.physiology.org/doi/full/10.1152/ajpendo.00111.2013

[24] Rudenko O.V., Safonov D.V., Rykhtik P.I., et al. Physical bases of elastography. Part 2. Shear wave elastography (lecture). Radiologiya — praktika [Radiology — Practice], 2014, no. 4, pp. 62–72 (in Russ.).

[25] Berezovskiy V.A., Kolotilov N.N. Biofizicheskie kharakteristiki tkaney cheloveka [Biophysical characteristics of human tissue]. Kiev, Naukova dumka Publ., 1990 (in Russ.).

[26] Khaydukova I.V., Belikov N.V., Rezvanova A.M., et al. Experimental study of the mechanical properties of materials for physical modelling of biological tissues. Biomeditsinskaya radioelektronika [Biomedical Radioelectronics], 2018, no. 5, pp. 22–25. DOI 10.18127/j15604136-201805-08 URL: http://www.radiotec.ru/article/20671 (in Russ.).

[27] Pokrovskiy A.V., Savrasov G.V., Novikov Yu.V., et al., eds. Ul’trazvukovaya angiokhirurgiya [Ultrasound angiosurgery]. Kostroma, DiAr Publ., 2004 (in Russ.).