|

Post-stroke rehabilitation system based on stationary visual evoked potentials

Authors: Popova V.A., Gremitsky I.S.
Published in issue: #10(63)/2021
DOI: 10.18698/2541-8009-2021-10-741


Category: Medical sciences | Chapter: Medical equipment and devices

Keywords: stroke, rehabilitation, fine motor skills of the upper extremities, brain-computer interface, biofeedback, electroencephalography, electromyography, stationary visual evoked potential
Published: 16.11.2021

The authors carried out a review of works on the issue of motor activity changes after a stroke using high-tech methods of apparatus rehabilitation. The paper presents a review of rehabilitation devices based on surface electromyography using biofeedback. The classification of methods for recording brain activity is considered, as well as a comparison of the advantages and disadvantages of the interfaces based on electroencephalography to substantiate the choice of the most rational method for solving the tasks posed. The authors proposed a new method of post-stroke rehabilitation using biofeedback based on synchronous recording of brain bioelectrical activity in the form of stationary visual evoked potential (SSVEP) and surface electromyography, which provides active training with a minimum level of neuromuscular system preservation.


References

[1] Bandakov M.P., Kovyazina G.V. Physical readiness as one of the most important components of professional activity. Vestnik VyatGGU [Herald of Vyatka State University], 2011, no. 1-3, pp. 90–94 (in Russ.).

[2] Mokienko O.A., Suponeva N.A., eds. Insul’t u vzroslykh: tsentral’nyy parez verkhney konechnosti. Klinicheskie rekomendatsii [Adult stroke: central paresis of the upper limb. Clinical recommendations]. Moscow, MEDpress-Inform Publ., 2018 (in Russ.).

[3] GOST R. 52600.5-2008. Protokol vedeniya bol’nykh. Insul’t. Natsional’nyy standart Rossiyskoy Federatsii [GOST R. 52600.5-2008. Protocol for patient’s management. Stroke]. Moscow, Standartinform Publ., 2009 (in Russ.).

[4] Machinskiy P.A., Plotnikova N.A., Ul’yankin V.E. et al. Comparative characteristics of the indicators of mortality and lethality from ischemic and hemorrhagic insult in Russia. Povolzhskiy region. Meditsinskie nauki [University Proceedings. Volga Region. Medical Sciences], 2019, vol. 19, no. 3, pp. 101–117. DOI: https://doi.org/10.21685/2072-3032-2019-3-10 (in Russ.).

[5] Alferova V.V., Belkin A.A., Voznyuk I.A. et al. Klinicheskie rekomendatsii po vedeniyu bol’nykh s ishemicheskim insul’tom i tranzitornymi ishemicheskimi atakami [Clinical recommendations on management of patient with an isсhemic stroke and transient ischemic attacks]. Moscow, MEDpress-Inform Publ., 2017 (in Russ.).

[6] Kwakkel G., Kollen B.J., Krebs H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair, 2008, vol. 22, no. 2, pp. 111–121. DOI: https://doi.org/10.1177/1545968307305457

[7] Germanotta M., Cruciani A., Pecchioli C. et al. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. J. NeuroEngineering Rehabil., 2018, vol. 15, no 1. pp. 1–14. DOI: https://doi.org/10.1186/s12984-018-0385-8

[8] Mehrholz J., Pohl M., Platz T. et al. Electromechanical and robotassisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev., 2018, no 9. DOI: https://doi.org/10.1002/14651858.CD006876.pub5

[9] Bondarenko F.V., Makarova M.R., Turova E.A. Restoration of the complicated locomotor functions of the upper extremities in the patients surviving ischemic stroke. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury [Problems of Balneology, Physiotherapy, and Exercise Therapy], 2016, vol. 93, no. 1, pp. 11–15. DOI: https://doi.org/10.17116/kurort2016111-15 (in Russ.).

[10] Cramer S.C., Riley J.D. Neuroplasticity and brain repair after stroke. Curr. Opin. Neurol., 2008, vol. 21, no. 1, pp. 76–82. DOI: https://doi.org/10.1097/WCO.0b013e3282f36cb6

[11] Klochkov A.S., Chernikova L.A. Robotic and mechanic therapeutic devices for recovering arm function after a stroke. RMZh, 2014, vol. 22, no. 22, pp. 1589–1592 (in Russ.).

[12] Vorob’yev A.A., Andryushchenko F.A., Zasypkina O.A. et al. Terminology and classification of exoskeleton. Vestnik VolgGMU [Journal of VolgSMU], 2015, no. 3, pp. 71–78 (in Russ.).

[13] Van Dijk H., Jannink M.J.A., Hermens H.J. et al. Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: a systematic review of randomized controlled trials. J. Rehabil. Med., 2005, vol. 37, no. 4, pp. 202–211. DOI https://doi.org/10.1080/16501970510030165

[14] Turovskiy Ya.A., Aref’yev Ya.V., Alekseev A.V. et al. Information system of biological feedback by electromyographic channel with use of glasses of augmented reality. Vestnik novykh meditsinskikh tekhnologiy [Journal of New Medical Technologies], 2017, vol. 24, no. 2, pp. 147–151. DOI: https://doi.org/10.12737/article_5947d3f44242c4.01994237 (in Russ.).

[15] De Nunzio A.M., Dosen S., Lemling S. et al. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low-and medium-force levels. Exp. Brain Res., 2017, vol. 235, no 8, pp. 2547–2559. DOI: https://doi.org/10.1007/s00221-017-4991-7

[16] Bogdanov O.V., Varman B.G., Aliev A.T. Recovery of a motor disorder using methods of functional biocontrol. Zhurnal nevropatologii i psikhiatrii, 1985, vol. 85, no. 3, pp. 359–365 (in Russ.).

[17] Kuz’micheva O.A. Using method of biofeedback from electrogram for correction of motor disorders. Biologicheskaya obratnaya svyaz’, 1999, no. 3, pp. 6–11 (in Russ.).

[18] Fedotchev A.I., Parin S.B., Polevaya S.A. et al. Brain–computer interface and neurofeedback technologies: current state, problems and clinical prospects (review). STM [Modern Technologies in Medicine], 2017, vol. 9, no. 1, pp. 175–184. DOI: https://doi.org/10.17691/stm2017.9.1.22 (in Russ.).

[19] Zhadin M.N. Biofizicheskie mekhanizmy formirovaniya elektroentsefalogrammy [Biophysical mechanisms of electroencephalogram formation]. Moscow, Nauka Publ., 1984 (in Russ.).

[20] Lew E., Chavarriaga R., Zhang H. et al. Self-paced movement intention detection from human brain signals: invasive and non-invasive EEG. 2012 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2012, pp. 3280–3283. DOI: https://doi.org/10.1109/EMBC.2012.6346665

[21] Denisova E.N., Makhrov S.S. Analysis of modern methods for recording brain activity signals via a brain-computer interface. T-COMM: Telekommunikatsii i transport [T-COMM], 2017, vol. 11, no. 12, pp. 14–17 (in Russ.).

[22] Bamdad M., Zarshenas H., Auais M.A. Application of BCI systems in neurorehabilitation: a scoping review. Disabil. Rehabil.: Assist. Technol., 2015, vol. 10, no 5, pp. 355–364. DOI: https://doi.org/10.3109/17483107.2014.961569

[23] Gandhi V. Brain-computer interfacing for assistive robotics: electroencephalograms, recurrent quantum neural networks, and user-centric graphical interfaces. Academic press, 2014.

[24] Lim J.H., Lee J.H., Hwang H.J. et al. Development of a hybrid mental spelling system combining SSVEP-based brain–computer interface and webcam-based eye tracking. Biomed. Signal Process. Control, 2015, vol. 21, pp. 99–104. DOI: https://doi.org/10.1016/j.bspc.2015.05.012

[25] Muller-Putz G.R., Pfurtscheller G. Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng., 2008, vol. 55, no 1, pp. 361–364. DOI: https://doi.org/10.1109/TBME.2007.897815

[26] Li Y., Pan J., Wang F. et al. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng., 2013, vol. 60, no. 11, pp. 3156–3166. DOI: https://doi.org/10.1109/TBME.2013.2270283

[27] Diez P. Smart wheelchairs and brain-computer interfaces. Academic Press, 2018.

[28] Mokienko O.A., Chernikova L.A., Frolov A.A. Brain-computer interface as a novel tool of neurorehabilitation. Annaly klinicheskoy i eksperimental’noy nevrologii [Annals of Clinical and Experimental Neurology], 2011, vol. 5, no. 3, pp. 46–52 (in Russ.).

[29] Regan D. Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, 1989.

[30] İşcan Z., Nikulin V.V. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS ONE, 2018, vol. 13, no. 1, art. e0191673. DOI: https://doi.org/10.1371/journal.pone.0191673

[31] Nawrocka A., Holewa K. Brain – Computer interface based on Steady – State Visual Evoked Potentials (SSVEP). Proc. 14th ICCC, 2013, pp. 251–254. DOI: https://doi.org/10.1109/CarpathianCC.2013.6560548

[32] Bieger J., Molina G.G., Zhu D. Effects of stimulation properties in steady-state visual evoked potential based brain-computer interfaces. Proc. 32nd Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2010, pp. 3345–3348.

[33] Bakardjian H., Tanaka T., Cichocki A. Optimization of SSVEP brain responses with application to eight-command brain–computer interface. Neurosci. Lett., 2010, vol. 469, no. 1, pp. 34–38. DOI: https://doi.org/10.1016/j.neulet.2009.11.039

[34] Fisher R.S., Harding G., Erba G. et al. Photicand patterninduced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia, 2005, vol. 46, no. 9, pp. 1426–1441. DOI: https://doi.org/10.1111/j.1528-1167.2005.31405.x

[35] Wang Y., Wand R., Gao X. et al. A practical VEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng., 2006, vol. 14, no 2, pp. 234–240. DOI: https://doi.org/10.1109/TNSRE.2006.875576

[36] Sakurada T., Kawase T., Komatsu T. et al. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Clin. Neurophysiol., 2015, vol. 126, no. 10, pp. 1972–1978. DOI: https://doi.org/10.1016/j.clinph.2014.12.010

[37] Ehlers J., Lueth T., Graeser A. High frequency steady-state visual evoked potentials: an empirical study on re-test stability for brain-computer interface usage. Proc. 3rd Int. Conf. CHIRA, 2019, pp. 164–170. DOI: https://doi.org/10.5220/0008348401640170

[38] Zhu D., Bieger J., Garcia Molina G. et al. A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci., 2010. vol. 2010, art. 702357. DOI: https://doi.org/10.1155/2010/702357

[39] Cao T., Wan, F., Mak P.U. et al. Flashing color on the performance of SSVEP-based brain-computer interfaces. 2012 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2012, pp. 1819–1822. DOI: https://doi.org/10.1109/EMBC.2012.6346304

[40] Mouli S., Palaniappan R., Sillitoe I.P. et al. Quantification of SSVEP responses using multi-chromatic LED stimuli: analysis on colour, orientation and frequency. 7th CEEC, 2015, pp. 93–98. DOI: https://doi.org/10.1109/CEEC.2015.7332706

[41] Safin D.R. Informatsionno-izmeritel’naya sistema upravleniya bioelektricheskim protezom. Diss. kand. tekh. nauk [Information measurement control system with bioelectrical prosthesis. Kand. tech. sci. diss.]. Astrakhan’, PGU Publ., 2011 (in Russ.).