|

Design and debugging of measuring registration unit prototype for brain-computer interface based on integrated instrumental amplifier

Authors: Shiryaeva V.S., Morozov D.D., Kuleshov D.Yu.
Published in issue: #3(68)/2022
DOI: 10.18698/2541-8009-2022-3-778


Category: Medical sciences | Chapter: Medical equipment and devices

Keywords: stroke, rehabilitation, brain-computer interface, electroencephalography, evoked potential P300, analog highway, integrated instrumental amplifier, recording unit
Published: 19.04.2022

The modern development of brain-computer interfaces (BCI) technology is actively expanding the functionality of rehabilitation measures and opportunities to improve the standard of living for patients with movement disorders, so the problem of developing low-cost and small-sized devices for everyday use is becoming increasingly important. This article describes the stages of developing a biological signal registration unit for potential use in BCI, as well as assembly and adjustment of the circuit on a solderless and solderable breadboard. Analysis of this prototype was carried out with the help of laboratory equipment to estimate circuit characteristics. The results of the experimental study with a healthy volunteer to assess the performance of the prototype are obtained. The main problems encountered during the experimental study are identified and methods for solving them are proposed.


References

[1] Kim J., Thayabaranathan T., Donnan G.A. et al. Global stroke statistics 2019. Int. J. Stroke., 2020, vol. 15, no. 8, pp. 819–838. DOI: https://doi.org/10.1177/1747493020909545

[2] Gremitskiy I.S., Kuleshov D.Yu., Popova V.A. Application of fingers vibrotactile stimulation in the brain — computer interface for the rehabilitation of post-stroke patients. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2021, no. 11. DOI: http://dx.doi.org/10.18698/2541-8009-2021-11-746 (in Russ.).

[3] Fadeev P.A. Insul’t [A stroke]. Moscow, Mir i obrazovanie Publ., 2008 (in Russ.).

[4] Weber L.M., Stein J. The use of robots in stroke rehabilitation: a narrative review. NeuroRehabilitation, 2018, vol. 43, no. 1, pp. 99–110. DOI: https://doi.org/10.3233/nre-172408

[5] Gremitskiy I., Levadniy I., Dmitriev A. The influence of vibro-tactile finger stimulation parameters on P300 characteristics changes for rehabilitation: pilot study on healthy subjects. USBEREIT, 2021, pp. 137–140. DOI: https://doi.org/10.1109/USBEREIT51232.2021.9455117

[6] Dmitriev A., Al-harosh Moscow, Sergeev I. et al. The optimal stimulation mode and the number of averaging epochs selection for P300 detection. USBEREIT, 2018, pp. 91–94. DOI: https://doi.org/10.1109/USBEREIT.2018.8384558

[7] Shokoueinejad Moscow, Park D.W., Jung Y.H. et al. Progress in the field of micro-electrocorticography. Micromachines, 2019, vol. 10, no. 1, art. 62. DOI: https://doi.org/10.3390/mi10010062

[8] Frolov A.A., Bobrov P.D. Brain-computer interface: neurophysiological background, clinical application. Zhurnal vysshey nervnoy deyatel’nosti im. I.P. Pavlova [Pavlov Journal of Higher Nervous Activity], 2017, vol. 67, no. 4, pp. 365–376. DOI: https://doi.org/10.7868/S0044467717040013 (in Russ.).

[9] Gnezditskiy V.V. Vyzvannye potentsialy mozga v klinicheskoy praktike [Evoked brain potential in chemical practice]. Taganrog, Izd-vo TRTU Publ., 1997 (in Russ.).

[10] Orlov YuN., Suglobova O.N. Issledovanie kharakteristik bioelektricheskikh elektrodov [Study on characteristics of bioelectric electrodes]. Moscow, Bauman MSTU Publ., 2006 (in Russ.).

[11] Gordeychuk A.P. Active earth system in an ECG machine. Peterburgskiy zhurnal elektroniki [Petersburg Electronics Journal], 2005, no. 2, 82–87 (in Russ.).

[12] Zenkov L.R. Klinicheskaya elektroentsefalografiya s elementami epileptologii [Clinical electroencephalography with elements of epileptology]. Moscow, MEDpressinform Publ., 2016 (in Russ.).

[13] Korenevskiy N.A., Popechitelev E.P. Uzly i elementy meditsinskoy tekhniki [Units and elements of medical technics]. Kursk, KursGTU Publ., 2009 (in Russ.).

[14] Neuron-Spectrum-5. 32-channel EEG and long-term monitoring system. neurosoft.com: website. URL: https://neurosoft.com/en/catalog/eeg/neuron-spectrum-5/ (accessed: 15.01.2022).

[15] INA118 precision, low-power instrumentation amplifier. ti.com: website. URL: https://www.ti.com/lit/ds/symlink/ina118.pdf (accessed: 15.01.2022).

[16] Volovich G.I. Skhemotekhnika analogovykh i analogo-tsifrovykh elektronnykh ustroystv [Circuit engineering of analog and analog-digital electronic devices]. Moscow, Dodeka-XXI Publ., 2005 (in Russ.).

[17] OP37. Low noise, precision, high speed operational amplifier. analog.com: website. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/OP37.pdf (accessed: 15.01.2022).

[18] Tekhnicheskie kharakteristiki generatora proizvol’nykh form signalov UNI-T UTG1005A [Technical parameters of UNI-T UTG1005A arbitrary waveform generator]. static.chipdip.ru: website (in Russ.). URL: https://static.chipdip.ru/lib/113/DOC003113028.pdf (accessed: 15.01.2022).