|

An overview of modern brain-computer interface technology in tasks of motor rehabilitation

Authors: Chekhvalov R.D., Konstantinova Z.A., Makeeva D.S.
Published in issue: #6(71)/2022
DOI: 10.18698/2541-8009-2022-6-806


Category: Medical sciences | Chapter: Medical equipment and devices

Keywords: electroencephalography, brain-computer interface, stroke, rehabilitation, motor skills, imaginative movement, P300 paradigm, exoskeleton
Published: 17.08.2022

Hardware methods of motor rehabilitation, in particular stroke rehabilitation, are being actively developed, but their use is limited by the severity of the motor impairment. One of the rehabilitation options is the use of a brain-computer interface. This paper gives a review of the application of this technology in the rehabilitation of post-stroke patients with paresis. For this purpose, a search of publications in the PubMed database was carried out. On the basis of the review, the publications are subdivided into groups and the accuracy and speed of data transfer are quantified. The results indicate a successful application of the brain-computer interface based on the motion imagination paradigm in the restoration of motor skills in clinical tasks. There are also trends towards the development of the P300 paradigm for motor rehabilitation tasks, despite the small amount of experimental data in the reviewed publications.


References

[1] Piradov M.A., Maksimova M.Yu., Tanashyan M.M. Insult. Poshagovaya instruktsiya [Stroke. Step-by-step guide]. Moscow, GEOTAR-Media Publ., 2019 (in Russ.).

[2] Mokienko O.A., Suponeva N.A., eds. Insult u vzroslykh: tsentralnyy parez verkhney konechnosti. Klinicheskie rekomendatsii [Stroke and adults: central paresis of the upper limb. Clinical recomendations]. Moscow, MEDpress-Inform Publ., 2018 (in Russ.).

[3] Allison B.Z., Kübler A., Jin J. 30+ years of P300 brain–computer interfaces. Psychophysiology, 2020, vol. 57, no. 7, art. e13569. DOI: https://doi.org/10.1111/psyp.13569

[4] Casey A., Azhar H., Grzes M. et al. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Disabil. Rehabil. Assist. Technol., 2021, vol. 16, no. 5, pp. 525–537. DOI: https://doi.org/10.1080/17483107.2019.1683239

[5] Gnezditskiy V.V. Vyzvannye potentsialy mozga v klinicheskoy praktike [Brain evoked potential in clinical practice]. Taganrog, Izd-vo TRTU Publ., 1997 (in Russ.).

[6] Barria P., Pino A, Tovar N. et al. BCI-based control for ankle exoskeleton T-FLEX: comparison of visual and haptic stimuli with stroke survivors. Sensors, 2021, vol. 21, no. 19, art. 6431. DOI: https://doi.org/10.3390%2Fs21196431

[7] Prasad G., Herman P., Coyle D. et al. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil., 2010, vol. 7, no. 1, art. 60. DOI: https://doi.org/10.1186/1743-0003-7-60

[8] Jochumsen M., Janjua T.A.M., Arceo J.C. et al. Induction of neural plasticity using a low-cost open source brain-computer interface and a 3D-printed wrist exoskeleton. Sensors, 2021, vol. 21, no. 2, art. 572. DOI: https://doi.org/10.3390/s21020572

[9] Sun R., Wong W.W., Wang J. et al. Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Front. Hum. Neurosci., 2017, vol. 11, art. 444. DOI: https://doi.org/10.3389/fnhum.2017.00444

[10] Li C., Jia T., Xu Q. et al. Brain-computer interface channel-selection strategy based on analysis of event-related Desynchronization topography in stroke patients. J. Healthc. Eng., 2019, vol. 2019, art. 3817124. DOI: https://doi.org/10.1155/2019/3817124

[11] Niazi I.K., Navid M.S., Rashid U. et al. Associative cued asynchronous BCI induces cortical plasticity in stroke patients. Ann. Clin. Transl. Neurol., 2022, vol. 9, no. 5, pp. 722–733. DOI: https://doi.org/10.1002/acn3.51551

[12] Scherer R., Faller J., Friedrich E.V.C. et al. Individually adapted imagery improves brain-computer interface performance in end-users with disability. PloS One, 2015, vol. 10, no. 5, art. e0123727. DOI: https://doi.org/10.1371/journal.pone.0123727

[13] Faller J., Scherer R., Friedrich E.V.C. et al. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Front. Neurosci., 2014, vol. 8, art. 320. DOI: https://doi.org/10.3389/fnins.2014.00320

[14] Carino-Escobar R.I., Carrillo-Mora P., Valdés-Cristerna R. et al. Longitudinal analysis of stroke patients’ brain rhythms during an intervention with a brain-computer interface. Neural Plast., 2019, vol. 2019, art. 7084618. DOI: https://doi.org/10.1155/2019/7084618

[15] Ono T., Shindo K., Kawashima K. et al. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front. Neuroeng., 2014, vol. 7, art. 19. DOI: https://doi.org/10.3389/fneng.2014.00019

[16] Zulauf-Czaja A., Al-Taleb M.K.H., Purcell M. et al. On the way home: a BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: a usability study. J. Neuroeng. Rehabil., 2021, vol. 18, no. 1, art 44. DOI: https://doi.org/10.1186/s12984-021-00838-y

[17] Do A.H., Wang P.T., King C.E. et al. Brain-computer interface controlled functional electrical stimulation system for ankle movement. J. Neuroeng. Rehabil., 2011, vol. 8, no. 1, art. 49. DOI: https://doi.org/10.1186/1743-0003-8-49

[18] Irimia D.C., Ortner R., Poboroniuc M.S. et al. High classification accuracy of a motor imagery based brain-computer interface for stroke rehabilitation training. Front. Robot. AI, 2018, vol. 29, art. 130. DOI: https://doi.org/10.3389/frobt.2018.00130

[19] Arvaneh M., Guan C., Ang K.K. et al. Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement. Neural Comput. Appl., 2017, vol. 28, no. 11, pp. 3259–3272. DOI: https://doi.org/10.1007%2Fs00521-016-2234-7

[20] Tang J., Liu Y., H D. et al. Towards BCI-actuated smart wheelchair system. Biomed. Eng. Online., 2018, vol. 17, no. 1, art. 111. DOI: https://doi.org/10.1186/s12938-018-0545-x

[21] Halder S., Hammer E.M., Kleih S.C. et al. Prediction of auditory and visual p300 brain-computer interface aptitude. PloS One, 2013, vol. 8, no. 2, art. e53513. DOI: https://doi.org/10.1371/journal.pone.0053513

[22] Nicolas-Alonso L.F., Gomez-Gil J. Brain computer interfaces, a review. Sensors, 2012, vol. 12, no. 2, pp. 1211–1279. DOI: https://doi.org/10.3390/s120201211

[23] Delijorge J., Mendoza-Montoya O., Gordillo J.L. et al. Evaluation of a p300-based brain-machine interface for a robotic hand-orthosis control. Front. Neurosci., 2020, vol. 14, art. 589659. DOI: https://doi.org/10.3389/fnins.2020.589659