|

Opal films and inverse structures formation by means of vacuum methods

Authors: Galaganova E.N.
Published in issue: #6(23)/2018
DOI: 10.18698/2541-8009-2018-6-328


Category: Mechanical Engineering and Machine Science | Chapter: Forming Technologies and Equipment

Keywords: opal, photonic crystals, thin-film coatings, vacuum methods, excluded region, microspheres, multilayer structure, absorber, alternative energy sources
Published: 13.06.2018

Obtaining the absorbing thin-film coatings using vacuum methods is an environmentally-friendly and highly-efficient way. The work describes the opal photon properties, its composition and the structure of the film made from these materials. We consider the process of getting the inverse structure of the metallic film applied in the technology of manufacturing the thin-filmed selective layers of the solar energy absorbers. The theoretical data contained in this work represent the author’s translation of the German scientist Johaness Ovping’s thesis (Ostwestfalen-Lippe University of Applied Sciences). The article suggests a structure of the solar energy absorber designed at the Laboratory of Micro- and Nanostructures, Department of Electron Beam Technologies in Mechanical Engineering, Bauman Moscow State Technical University.


References

[1] Golubev V.G., Kosobukin V.A., Kurdyukov D.A., Medvedev A.V., Pevtsov A.B. Photonic crystals with tunable band gap based on filled and inverted opal-silicon composites Semiconductors, 2001, vol. 35, no. 6, pp. 680–683.

[2] Schmich E., Reber S., Hees J., Trenkle F., Schillinger N., Willeke G. Emitter epitaxy for crystalline silicon thin-film solar cells. Proc. 21st EPSEC and Exhibition. Dresden, 2006, pp. 734–737.

[3] Üpping J., Bielawny A., Miclea P.T., Wehrspohn R.B. 3D photonic crystals for ultra-light trapping in solar cells. Proc. SPIE, 2008, vol. 7002, art. 70020W.

[4] Kudryavtseva E.N., Pichugin V.F., Nikitenkov N.N. Study of coatings based on titanium oxides and oxynitrides using a set of methods. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya, 2012, no. 8, pp. 65–69. (Eng. version: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2012, vol. 6, no. 4, pp. 688–692.)

[5] Choi D.G., Kim S., Jang S.G., Yang S.M., Jeong J.R., Shin S.C. Nanopatterned magnetic metal via colloidal lithography with reactive ion etching. Chem. Mater., 2004, vol. 16, no. 22, pp. 4208–4211.

[6] Varghese L.T., Xuan Y., Niu B., Fan L., Bermel P., Qi M. Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3d photonic bandgaps. Advanced Optical Materials, 2013, vol. 1, no. 10, pp. 692–698.

[7] Galaganova E.N. Razrabotka tekhnologii izgotovleniya tonkoplenochnykh pokrytiy dlya absorberov solnechnoy energii [Technology development of thin films production for solar energy absorbers]. Vakuumnaya tekhnika, materialy i tekhnologiya. Mat. XI Mezhd. nauch.-tekhn. konf. [Vacuum technique, materials and technology. Proc. XI Int. sci.-tech. conf.]. Moscow, Novella publ., 2017, pp. 113–117.

[8] Galaganova E.N. Izgotovlenie absorberov solnechnoy energii i perspektivy primeneniya struktur s ispol’zovaniem opalovykh matrits [Production of solar energy absorbers and application prospects for structures with opal matrices]. Sbornik trudov molodezhnogo nauchno-tekhnicheskogo foruma «Bogatstvo Rossii» [Proc. youth sci.-tech. forum “Wealth of Russia”]. Moscow, Bauman Press, 2017, pp. 154–156.

[9] Dobronosova A.A., Panfilova E.V. Issledovanie obraztsov opalovykh plenok so sformirovannym na nikh massivom nanochastits. Vakuumnaya tekhnika, materialy i tekhnologiya. Mat. XI Mezhd. nauch.-tekhn. konf. [Vacuum technique, materials and technology. Proc. XI Int. sci.-tech. conf.]. Moscow, Novella publ., 2017, pp. 152–157.