|

Methods to improve the resistance of nickel heat-resisting alloys to high-temperature creep

Authors: Arginbaeva E.G., Lutskaya S.A.
Published in issue: #4(33)/2019
DOI: 10.18698/2541-8009-2019-4-467


Category: Metallurgy and Science of Materials | Chapter: Metal Science, Thermal Processing of Metals and Alloys

Keywords: creep, nickel heat-resisting alloy, monocrystal, misfit, raft structure, rhenium, heat treatment, hot isostatic pressing
Published: 30.04.2019

A review of the scientific publications of foreign and domestic researchers on the problem of high-temperature creep of nickel-based foundry heat-resisting alloys has been performed. Information is given on the mechanisms of high-temperature creep for alloys with a monocrystal and polycrystalline structure. The main methods for improving the structural stability of nickel alloys by refining, doping, gas-static pressing and heat treatment are considered, and data are presented on the effect of the cooling rate on the creep resistance of alloys. Promising areas of research by Federal State Unitary Enterprise all-Russian Scientific Research State Research Center Of The Russian Federation to increase the resistance of foundry heat-resistant nickel alloys to high-temperature creep are indicated.


References

[1] Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and benchmarks of Russian innovation development]. Moscow, VIAM Publ., 2015. (in Russ.).

[2] Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoy aviatsionnoy tekhniki [Major results and growth direction of materials for future aircraft technologies]. Aviatsionnye materialy. 75 let. Izbrannye Trudy [Aircraft materials. 75 years. Selectas]. Moscow, VIAM Publ., 2007, pp. 20–26 (in Russ.).

[3] Gerasimov V.V. From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting). Trudy VIAM [Proceedings of VIAM], 2016, no. 10. DOI: 10.18577/2307-6046-2016-0-10-1-1 URL: http://viam-works.ru/ru/articles?art_id=1014 (in Russ.).

[4] Kablov E.N. What to made future of? Materials of new generation, their production and recycling technologies – basis of innovation. Kryl’ya Rodiny, 2016, no. 5, pp. 8–18 (in Russ.).

[5] Lutsenko A.N., Slavin A.V., Erasov V.S., et al. Strength tests and researches of aviation materials. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2017, no. S, pp. 527–546 (in Russ.).

[6] Kablov E.N., Tolorayya V.N., Demonis I.M., et al. Directed crystallization of heat-resistant nickel-based alloys. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 60–70 (in Russ.).

[7] Kuznetsov V.P., Lesnikov V.P., Popov N.A. Struktura i svoystva monokristallicheskikh zharoprochnykh nikelevykh splavov [Structure and properties of monocrystal heat-resistant nickel-based alloys]. Ekaterinburg, UrFU Publ., 2016 (in Russ.).

[8] Strondl A., Milenkovic S., Schneider A., et al. Effect of processing on microstructure and physical properties of three nickel-based superalloys with different hardening mechanisms. Adv. Eng. Mater., 2012, vol. 14, no. 7, pp. 427–438. DOI: 10.1002/adem.201100349 URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201100349

[9] Walter J.L., Harvey E.C. Structures and properties of cobalt-base tantalum carbide eutectic alloys. MT, 1973, vol. 4, no. 8, pp. 1775–1784. DOI: 10.1007/BF02665403 URL: https://link.springer.com/article/10.1007/BF02665403

[10] Berthod P., Aranda L., Vebert C., et al. Experimental and thermodynamic study of the high temperature microstructure of tantalum containing nickel-based alloys. Calphad, 2004, vol. 28, no. 2, pp. 159–166. DOI: 10.1016/j.calphad.2004.07.005 URL: https://www.sciencedirect.com/science/article/abs/pii/S0364591604000586

[11] Sun W., Qin X., Guo J. et al. Thermal stability of primary MC carbide and its influence on the performance of cast Ni-base superalloys. Mater. Des., 2015, no. 69, pp. 81–88. DOI: 10.1016/j.matdes.2014.12.038 URL: https://www.sciencedirect.com/science/article/pii/S026130691401022X

[12] Berthod P., Conrath E. Creep and oxidation kinetics at 1100°C of nickel-base alloys reinforced by hafnium carbides. Mater. Des., 2016, vol. 104, pp. 27–36. DOI: 10.1016/j.matdes.2016.04.079 URL: https://www.sciencedirect.com/science/article/pii/S0264127516305597

[13] Smith T.M., Esser B.D., Antolin N., et al. Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater., 2015, vol. 100, pp. 19–31. DOI: 10.1016/j.actamat.2015.08.053 URL: https://www.sciencedirect.com/science/article/abs/pii/S1359645415006308

[14] Smith T.M., Rao Y., Wang Y., et al. Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater., 2017, no. 141, pp. 261–272. DOI: 10.1016/j.actamat.2017.09.027 URL: https://www.sciencedirect.com/science/article/abs/pii/S1359645417307607

[15] Tian S., Zhang B., Delong S., et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures. Mater. Sci. Eng. A, 2015, no. 643, pp. 119–126. DOI: 10.1016/j.msea.2015.06.091 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509315301453

[16] Tian S., Zhu B., Wu J., et al. Influence of temperature on stacking fault energy and creep mechanism of a single crystal nickel-based superalloy. J. Mater. Sci. Technol., 2016, vol. 32, no. 8, pp. 790–798. DOI: 10.1016/j.jmst.2016.01.020 URL: https://www.sciencedirect.com/science/article/pii/S1005030216300512

[17] Petrushin N.V., Ospennikova O.G., Elyutin E.S. Rhenium in single crystal nickel-based superalloys for gas turbine engine blades. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2014, no. S, pp. 5–16 (in Russ.).

[18] Giamei A.F., Anton D.L. Rhenium additions to a Ni-base superalloy: effects on microstructure. MTA, 1985, vol. 16, no. 11, pp. 1997–2005. DOI: 10.1007/BF02662400 URL: https://link.springer.com/article/10.1007/BF02662400

[19] Huang Moscow, Cheng Zh., Xiong J., et al. Coupling between Re segregation and γ/γ’ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy. Acta Materialia, 2014, vol. 76, pp. 294–305. DOI: 10.1016/j.actamat.2014.05.033 URL: https://www.sciencedirect.com/science/article/abs/pii/S1359645414003814

[20] Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel-based heat-resistant alloys doped by rhenium. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2004, no. 1, pp. 80–90 (in Russ.).

[21] Karunaratne M.S.A., Carter P., Reed R.C. Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 C. Mater. Sci. Eng. A, 2000, vol. 281, no. 1-2, pp. 229–233. DOI: 10.1016/S0921-5093(99)00705-4 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509399007054

[22] Bazyleva O.A., Arginbaeva E.G., Lutskaya S.A. Ways of increasing corrosion resistance of superalloys (REVIEW). Trudy VIAM [Proceedings of VIAM], 2018, no. 4. URL: DOI: 10.18577/2307-6046-2018-0-4-3-8 URL: http://viam-works.ru/ru/articles?art_id=1235 (in Russ.).

[23] Pröbstle Moscow, Neumeier S., Feldner P., et al. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements. Mater. Sci. Eng. A, 2016, no. 676, pp. 411–420. DOI: 10.1016/j.msea.2016.08.121 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509316310565

[24] Shimabayashi Sh., Kakehi K. Effect of ruthenium on compressive creep of Ni-based single-crystal superalloy. Scripta Materialia, 2010, vol. 63, no. 9, pp. 909–912. DOI: 10.1016/j.scriptamat.2010.06.048 URL: https://www.sciencedirect.com/science/article/pii/S1359646210004562

[25] Kablov E.N., Petrushin N.V., Elyutin E.S. Single-crystal heatproof alloys for gas-turbine engines. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. S2, pp. 38–52 (in Russ.).

[26] Guo J.T., Sheng L.Y., Xie Y., et al. Microstructure and mechanical properties of Ni3Al and Ni3Al-1B base alloys fabricated by SHS/HE. Intermetallics, 2011, vol. 19, no. 2, pp. 137–142. DOI: 10.1016/j.intermet.2010.08.027 URL: https://www.sciencedirect.com/science/article/pii/S0966979510003663

[27] Kablov D.E., Sidorov V.V., Min P.G., et al. The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2015, no. 3, pp. 3–9 (in Russ.).

[28] Epishin A.E., Svetlov I.L., Brueckner U., et al. high-temperature creep of monocrystals of nickel-based heat-resistant alloys with [001] orientation. Materialovedenie, 1999, no. 5, pp. 32–42 (in Russ.).

[29] Giraud R., Hervier Z., Cormier J., et al. Effect of the prior microstructure degradation on the high temperature/low stress non-isothermal creep behavior of cmsx-4® Ni-based single crystal superalloy. Superalloys, 2012, pp. 265–274. DOI: 10.1002/9781118516430.ch29 URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118516430.ch29

[30] Tian S., Zhang B., Yu H., et al. Microstructure evolution and creep behaviors of a directionally solidified nickel-base alloy under long-life service condition. Mater. Sci. Eng. A, 2016, vol. 673, pp. 391–399. DOI: 10.1016/j.msea.2016.07.041 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509316307936

[31] Buck H., Wollgramm P., Parsa A.B., et al. A quantitative metallographic assessment of the evolution of porosity during processing and creep in single crystal superalloys. Materwiss. Werksttech., 2015, vol. 46, no. 6, pp. 577–590. DOI: 10.1002/mawe.201500379 URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/mawe.201500379

[32] Kaplanskiia Yu.Yu., Zaitseva A.A., Levashova E.A., et al. NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders. Evolution of the structure and mechanical behavior at high temperatures. Mater. Sci. Eng. A, 2018, vol. 717, pp. 48–59. DOI: 10.1016/j.msea.2018.01.057 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509318300753

[33] Stevens R.A., Flewitt P.E.J. Hot isostatic pressing to remove porosity & creep damage. Mater. Des., 1982, vol. 3, no. 3, pp. 461–469. DOI: 10.1016/0261-3069(82)90112-1 URL: https://www.sciencedirect.com/science/article/pii/0261306982901121

[34] Qiu C., Wu X., Mei J., et al. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J. Alloys Compd., 2013, no. 578, pp. 454–464. DOI: 10.1016/j.jallcom.2013.06.045 URL: https://www.sciencedirect.com/science/article/abs/pii/S0925838813014436

[35] Zhou Y., Zhang Z., Zhao Z.H., et al. Effects of HIP temperature on the microstructural evolution and property restoration of a Ni-based superalloy. J. Mater. Eng. Perform., 2013, vol. 22, no. 1, pp. 215–222. DOI: 10.1007/s11665-012-0246-8 URL: https://link.springer.com/article/10.1007/s11665-012-0246-8

[36] Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., et al. An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2015, no. 3, pp. 10–14. (in Russ.).

[37] Chomette S., Gentzbittel J.M., Viguier B. Creep behaviour of as received, aged and cold worked INCONEL 617 at 850 °C and 950 °C. J. Nucl. Mater., 2010, no. 399, no. 2-3, pp. 266–274. DOI: 10.1016/j.jnucmat.2010.01.019 URL: https://www.sciencedirect.com/science/article/pii/S0022311510000334

[38] Steuer S., Hervier Z., Thabart S., et al. Creep behavior under isothermal and non-isothermal conditions of AM3 single crystal superalloy for different solutioning cooling rates. Mater. Sci. Eng. A, 2014, no. 601, pp. 145–152. DOI: 10.1016/j.msea.2014.02.046 URL: https://www.sciencedirect.com/science/article/abs/pii/S0921509314001981

[39] Kablov E.N., Buntushkin V.P., Bazyleva O.A., et al. Splav na osnove nikelya i izdelie, vypolnennoe iz nego [Nickel-based alloy and product made of it]. Patent 2215054 RF. Appl. 03.06.2002, publ. 27.10.2003 (in Russ.).

[40] Arginbaeva E.G., Bazyleva O.A., Ospennikova O.G., et al. Intermetallic nickel alloys for aircraft gas-turbine engines. Vestnik RFFI, 2017, no. 4(96), pp. 107–114 (in Russ.).

[41] Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materials for parts of gas-turbine engines under high heat loads. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. S2, pp. 13–19 (in Russ.).

[42] Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., et al. Development trends of nickel-based intermetallic alloys. Aviatsionnye materialy i tekhnologii [Aviation materials and technologies], 2017, no. S, pp. 104–115 (in Russ.).