|

Effect of lithium on the energy balance of deuterium plasma

Authors: Vesnin V.R.
Published in issue: #11(16)/2017
DOI: 10.18698/2541-8009-2017-11-190


Category: Physics | Chapter: Plasma physics

Keywords: fusion plasma, deuterium, lithium, fast neutrons, Lawson criterion, neutron yield, energy balance
Published: 30.10.2017

The study analysed the effect of lithium on the energy balance of deuterium plasma featuring a DD reaction. Combustion of the tritium generated creates high-energy neutrons. We investigated whether it is possible to obtain 14 МeV neutrons in deuterium plasma with added lithium. The mixture of lithium and deuterium is a potentially useful source of fast neutrons. Permissible ratio between concentrations of lithium and deuterium is 0.3…0.4 for the plasma temperature of approximately 100 keV.


References

[1] Dolganov V.V., Chirkov A.Yu. Features of fusion reactions at accelerated deuterons collisions in plasma. Inzhenernyy zhurnal: nauka i innovatsii [Inzhenernyy zhurnal: nauka i innovatsii], 2016, no. 8. Available at: http://engjournal.ru/catalog/arse/teje/1523.html.

[2] Khvesyuk V.I., Chirkov A.Yu. Energy production in ambipolar reactors with D-T, D-3He, and D-D fuel cycles. Pis’ma v ZhTF, 2000, vol. 26, no. 21, pp. 61–66. (Eng. version: Technical Physics Letters, 2000, vol. 26, no. 11, pp. 964–966).

[3] Chirkov A.Yu. About scalings for a plasma confinement time in the field reversed configuration. Prikladnaya fizika, 2007, no. 2, pp. 31–37.

[4] Chirkov A.Yu. Low radioactivity fusion reactor based on the spherical tokamak with a strong magnetic field. Journal of Fusion Energy, 2013, vol. 32, no. 2, pp. 208–214.

[5] Feldbacher R. Nuclear reaction cross sections and reactivity parameter library and files. The Alternate Energy Physics. Program Barnbook DATLIB. Vienna, IAEA, 1987. 148 p.

[6] Khvesyuk V.I., Chirkov A.Yu. A low-radioactive D-3He thermonuclear fuel cycle with 3He self-supply. Pis’ma v ZhTF, 2001, vol. 27, no. 16, pp. 47–53. (Eng. version: Technical Physics Letters, 2001, vol. 27, no. 8, pp. 686–688).

[7] Chirkov A.Yu., Khvesyuk V.I. Low-radioactivity D–3He fusion fuel cycles with 3He production. Plasma Phys. Control. Fusion, 2002, vol. 44, no. 2, pp. 253–260.

[8] Safronov K.V., Vikhlyaev D.A., Gavrilov D.S., Gorokhov pp.A., Kakshin A.G., Lipin A.V., Loboda E.A., Pakhomov pp.N., Potapov A.V., Savel’yev A.V., Tolstoukhov P.A., Flegentov V.A. Generatsiya bystrykh neytronov v (p,n) i (d,n) reaktsiyakh pod deystviem uskorennykh lazerom chastits [Fast neutrons generation in (p,n) and (d,n) reactions under impact of laser-accelerated particles]. XLI Mezhd. (Zvenigorodskaya) konferentsiya po fizike plazmy i UTS [XLI Int. (Zvenigoros) Conf. on Plasma Physics and Controlled Nuclear Fusion]. Zvenigorod, 2014, 133 p.

[9] Kondrat’yev V.N. Energy levels of the atomic kernels. UFN, 1949, vol. 38, no. 2, pp. 153–221.

[10] Chirkov A.Yu. Energy efficiency of the alternative thermonuclear system with magnetic plasma containment. Yadernaya fizika i inzhiniring, 2013, vol. 4, no. 11–12, pp. 1050–1059.

[11] Chirkov A.Yu. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamak with two-component plasma. Nucl. Fusion, 2015, vol. 55, no. 11, pp. 113027.

[12] Almagambetov A.N., Chirkov A.Yu. Power and sizes of tokamak fusion neutron sources with NBI-enhanced reaction rate. Journal of Fusion Energy, 2016, vol. 35, no. 6, pp. 841–848.

[13] Svetlov A.S., Chirkov A.Yu. Research on thermal stability of thermonuclear plasma. Yadernaya fizika i inzhiniring, 2015, vol. 6, no. 9–10, pp. 437–441.

[14] Svetlov A.S., Chirkov A.Yu. Fusion plasma thermal stability at different energy confinement scaling laws. Prikladnaya fizika [Applied Physics], 2016, no. 2, pp. 25–28.