|

Estimation of rational energy parameters of protons in the railgun channel

Authors: Kachesov A.E.
Published in issue: #8(61)/2021
DOI: 10.18698/2541-8009-2021-8-723


Category: Physics | Chapter: Plasma physics

Keywords: railgun, optimal energy, ion scattering on a crystal lattice, projectile body, mathematical modeling, Monte Carlo method, elastic scattering, Firsov potential
Published: 26.08.2021

The author performed a numerical calculation based on the statistical modeling method of the average impulse transmitted by protons to the projectile body in the railgun channel. The author carried out the analysis of the data obtained and the estimation of the optimal proton energy in the plasma formation for the maximum transfer of momentum in the motion direction to the projectile in the railgun channel. The optimal energy in accordance with the results obtained is in the range 66 ... 67 eV. Acceleration of plasma protons in the railgun channel to a speed corresponding to the found optimal proton energy will increase the efficiency of railguns, which curently does not exceed 40% in experimental facilities.


References

[1] Bobashev S.V., Zhukov B.G., Kurakin R.O. et al. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators. ZhTF, 2015, vol. 85, no. 1, pp. 39–46 (in Russ.). (Eng. version: Tech. Phys., 2015, vol. 60, no. 1, pp. 40–47. DOI: https://doi.org/10.1134/S1063784215010053)

[2] Fortov V.E., Lebedev E.F., Luzganov S.N. et al. Railgun experiment and computer simulation of hypervelocity impact of lexan projectile on aluminum target. Int. J. Impact Eng., 2006, vol. 33, no. 1, pp. 253–262. DOI: https://doi.org/10.1016/j.ijimpeng.2006.09.008

[3] Schneider M., Vincent G., Hogan J.D. et al. The use of a railgun facility for dynamic fracture of brittle materials. IEEE Trans. Plasma Sci., 2015, vol. 43, no. 5, pp. 1162–1166. DOI: https://doi.org/10.1109/TPS.2015.2396081

[4] Hsu S.C. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications. Phys. Plasmas, 2012, vol. 19, art. 123514. DOI: https://doi.org/10.1063/1.4773320

[5] Zhukov B.G., Reznikov B.G. Influence of the gas density on the motion of a free plasma piston in the railgun channel. ZhTF, 2007, vol. 77, no. 7, pp. 43–49 (in Russ.). (Eng. version: Tech. Phys., 2007, vol. 52, no. 2, pp. 865–871. DOI: https://doi.org/10.1134/S1063784207070079)

[6] Betz H.D. Charge states and charge-changing cross sections of fast heavy ions penetrating through gaseous and solid media. Rev. Mod. Phys., 1972, vol. 44, no. 3, pp. 465–539. DOI: https://doi.org/10.1103/RevM odPhys.44.465

[7] Ninov V., Armbruster P., Hesberger F.P. et al. Separation of actinide-made transurania by a gas-filled magnetic separator. Nucl. Instrum. Methods. Phys. Res. A, 1995, vol. 357, no. 2-3, pp. 486–494. DOI: https://doi.org/10.1016/0168-9002(94)01701-8

[8] Paul M., Glagola B.G., Henning W. et al. Heavy ion separation with a gas-filled magnetic spectrograph. Nucl. Instrum. Methods. Phys. Res. A, 1989, vol. 277, no. 2-3, pp. 418–430. DOI: https://doi.org/10.1016/0168-9002(89)90771-7

[9] Landau L.D., Lifshits E.M. Mekhanika [Mechanics]. Moscow, Nauka Publ., 1973 (in Russ.).

[10] Shcherbakov A.P. Computer simulation of atom scattering as applied to problems of scientific instrumentation. Nauchnoe priborostroenie, 2003, vol. 13, no. 1, pp. 14–23. (in Russ.).

[11] Goldstein H. Classical mechanics. Addison-Wesley, 1950. (Russ. ed.: Klassicheskaya mekhanika. Moscow, Nauka Publ., 1975.)

[12] Kishinevskiy L.M. Inelastic losses and ionization cross section. Izvestiya AN SSSR. Seriya fizich., 1962, vol. 26, pp. 1410–1414 (in Russ.).

[13] Gerasimov Yu.V., Maslov A.G., Kachesov A.E. et al. Dynamics of plasma piston composition. J. Phys.: Conf. Ser., 2019, vol. 1348, art. 012053. DOI: https://doi.org/10.1088/1742-6596/1348/1/012053

[14] Kudryavtsev A.A., Tsendin L.D. Mechanisms for formation of the electron distribution function in the positive column of discharges under Langmuir-paradox conditions. ZhTF, 1999, vol. 69, no. 11, pp. 34–41. (Eng. version: Tech. Phys., 1999, vol. 44, no. 11, pp. 1290–1297. DOI: https://doi.org/10.1134/1.1259512)