A model of power-law inflation based on modified theories of gravity
Authors: Spiridonov L.E. | |
Published in issue: #9(74)/2022 | |
DOI: 10.18698/2541-8009-2022-9-823 | |
Category: Physics | Chapter: Plasma physics |
|
Keywords: power-law inflation, Einstein gravity, cosmological models, scalar field, general theory of relativity, modified theories of gravity, cosmological perturbations, relic gravitational waves |
|
Published: 07.10.2022 |
The model of power-law inflation based on Einstein's gravity and modified theories of gravitation is considered. It is shown that the modification of the gravity theory leads to the possibility of conformity of the model predictions with the modern observational constraints associated with the measurement of the anisotropy and polarization of the relic radiation. The characteristics of relic gravitational waves predicted in the considered model of cosmological inflation are determined and these characteristics are compared with the limiting sensitivity of modern detectors. It is noted that the proposed method of constructing models of cosmological inflation verified by observational data can be applied to arbitrary models, different from the power-law inflation considered in the present paper.
References
[1] Fomin I.V., Chervon S.V., Morozov A.N. Gravitatsionnye volny ranney Vselennoy [Gravitation waves of the early Universe]. Moscow, Bauman MSTU Publ., 2018 (in Russ.).
[2] Baumann D. The physics of inflation. CreateSpace Independent Publishing Platform, 2015.
[3] Felice A.D., Tsujikawa S., Elliston J. et al. Chaotic inflation in modified gravitational theories. J. Cosmol. Astropart. Phys., 2011, vol. 2011, no. 8, art. 021. DOI: http://dx.doi.org/10.1088/1475-7516/2011/08/021
[4] Felice A.D., Tsujikawa S. Primordial non-gaussianities in general modified gravitational models of inflation. J. Cosmol. Astropart. Phys., 2011, vol. 2011, no. 4, art. 029. DOI: https://doi.org/10.1088/1475-7516/2011/04/029
[5] Riotto A. Inflation and the theory of cosmological perturbations. INFN, 2002.
[6] Mukhanov V., Fe1dman H., Brandenberger R. Theory of cosmological perturbations. Phys. Rep., 1992, vol. 215, no. 5-6, pp. 203–333. DOI: https://doi.org/10.1016/0370-1573(92)90044-Z
[7] Aghanim N., Akrami Y., Ashdown M. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 2020, vol. 641, art. A6. DOI: https://doi.org/10.1051/0004-6361/201833910
[8] Tanin E.H., Tenkanen T. Gravitational wave constraints on the observable inflation. J. Cosmol. Astropart. Phys., 2021, vol. 2021, no. 1, art. 053. DOI: https://doi.org/10.1088/1475-7516/2021/01/053
[9] Amaro-Seoane P., Audley H., Babak S. et al. Laser interferometer space antenna. DOI: https://doi.org/10.48550/arXiv.1702.00786
[10] Abbott B.P., Abbott R., Abbott T.D. et al. Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Phys. Rev. D, 2019, vol. 100, no. 6, art. 061101. DOI: https://doi.org/10.1103/PhysRevD.100.061101
[11] Golyak I.S., Morozov A.N., Nazolin A.L. et al. Information-measuring complex to detect high frequency gravitational waves. Radiostroenie [Radio Engineering], 2021, no. 2, pp. 13–23. DOI: https://doi.org/10.36027/rdeng.0221.0000190 (in Russ.).