Para-photon as a quasiparticle of a gravitational field
Authors: Filatov V.V. | |
Published in issue: #4(45)/2020 | |
DOI: 10.18698/2541-8009-2020-4-597 | |
Category: Physics | Chapter: Physics and technology of nanostructures, nuclear and molecular |
|
Keywords: gravity, quantum, para-photon, two-photon state, inelastic scattering, conversion, gravitational wave, optical gravitational generation |
|
Published: 24.04.2020 |
From the standpoint of the general theory of relativity, the propagation of an electromagnetic field in a slightly curved space-time is analyzed. It is established that when a laser beam propagates in a vacuum filled with an electromagnetic field, the curvature of the space-time metric corresponds to the gravitational field described by the wave equation with a quadratic electromagnetic source. Authors show that this equation corresponds to a coupled two-photon state — a para-photon. A synchronous propagation of gravitational and para-photon fields was detected. The hypothesis is advanced of para-photon as a quasiparticle of the gravitational field. The results obtained are of fundamental importance both for constructing the quantum theory of gravity and for the problem of direct laboratory generation of high-frequency gravitational waves.
References
[1] Alimkina I.S., Filatov V.V., Gorelik V.S., et al. Paraphoton lasing in periodic dielectrics. Abs. Int. Sci. Conf. PIRT-2019. Moscow, Bauman MSTU Publ., 2019, pp. 9–10.
[2] Peccei R.D., Quinn H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett., 1977, vol. 38 no. 25, pp. 1440–1443. DOI: https://doi.org/10.1103/PhysRevLett.38.1440
[3] Peccei R.D., Quinn H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D, 1977, vol. 16, no. 6, pp. 1791–1797. DOI: https://doi.org/10.1103/PhysRevD.16.1791
[4] Weinberg S. Gravitation and cosmology. Principles and applications of the general theory of relativity. Wiley, 1972.
[5] Bilen’kiy S.M. Vvedenie v diagrammnuyu tekhniku Feynmana [Introduction into Feynman technique]. Moscow, Atomizdat Publ., 1971 (in Russ.).
[6] Misner C., Thorne K.S., Wheeler J.A. Gravitation. W H. Freeman, 1973.
[7] Sakurai J.J., Napolitano J. Modern quantum mechanics. Pearson, 2011.
[8] Pichkurenko S.V., Filatov V.V. Electromagnetic field localization and its amplification in the globular photonic crystal nuclear physics and engineering. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering], 2018, vol. 9, no. 6, pp. 582–584. DOI: https://doi.org/10.1134/S2079562918050214 (in Russ.).
[9] Gorelik V.S., Gladyshev V.O., Kauts V.L. On the generation and detection of high-frequency gravitational waves optically excited in dielectric media. Kratkie soobshcheniya po fizike FIAN, 2018, no. 2, pp. 10–21 (in Russ.). (Eng. version: Bull. Lebedev Phys. Inst., 2018, vol. 45, no. 2, pp. 39–45. DOI: https://doi.org/10.3103/S1068335618020021)
[10] Gorelik V.S., Pustovoit V.I., Gladyshev V.O., et al. Generation and detection of high frequency gravitational waves at intensive electromagnetic excitation. J. Phys.: Conf. Ser., 2018, vol. 1051, art. 012001. DOI: https://doi.org/10.1088/1742-6596/1051/1/012001
[11] Gorelik V.S., Filatov V.V. The resonance photon-paraphoton conversion in media. J. Phys.: Conf. Ser., 2018, vol. 1051, art. 012012. DOI: https://doi.org/10.1088/1742-6596/1051/1/012012
[12] Izmailov G.N., Gorelik V.S. Gain of photon-axion conversion in paramagnetics. J. Phys.: Conf. Ser., 2018, vol. 1051, art. 012015. DOI: https://doi.org/10.1088/1742-6596/1051/1/012015
[13] Gorelik V.S., Sverbil V.P., Gorshunov B.P., et al. Pseudoscalar lattice modes in the amino acid crystals and DNA. J. Phys.: Conf. Ser., 2017, vol. 918, art. 012033. DOI: https://doi.org/10.1088/1742-6596/918/1/012033
[14] Gorelik V.S. Production of pseudoscalar bosons upon stimulated Raman scattering in dielectric media. Izvestiya RAN. Seriya fizicheskaya, 2016, vol. 80, no. 7, pp. 855–860. DOI: https://doi.org/10.3103/S1062873816070145 (in Russ.). (Eng. version: Bull. Russ. Acad. Sci. Phys., 2016, vol. 80, no. 7, pp. 779–784. DOI: https://doi.org/10.3103/S1062873816070145)