|

Comparison of new generation tokamaks

Authors: Kopaleishvili N.G., Batrak N.V.
Published in issue: #9(74)/2022
DOI: 10.18698/2541-8009-2022-9-822


Category: Physics | Chapter: Thermophysics and theoretical heat engineering

Keywords: tokamak with reactor technologies, international experimental fusion reactor, controlled fusion, demonstration fusion power plants, ITER, DEMO, TRT, T-15MD, Rosatom, TRINITI
Published: 07.10.2022

The relevance of the development and operation of new generation tokamaks is investigated. A comparative analysis of future and current tokamaks concepts is carried out. This paper considers such facilities as ITER (International Thermonuclear Experimental Reactor), DEMO (Demonstration Thermonuclear Reactor), TRT (tokamak with reactor technologies), T-15MD, T-15. The principle of controlled thermonuclear fusion based on the reaction of deuterium and tritium is shown, and the advantage of this reaction over other possible ones is highlighted. The characteristics of the devices, the terms of their construction and the conditions of work are examined. The missions and tasks of modern projects are considered. Based on the investigated data, a conclusion is made about the feasibility of developing a new generation of tokamaks.


References

[1] Ryzhkov S.V., Chirkov A.Yu. Sistemy alternativnoy termoyadernoy energetiki [Systems of alternative fusion energetics]. Moscow, Fizmatlit Publ., 2017 (in Russ.).

[2] Khimchenko L.N., Krasilnikov A.V. [ITER. Tokamak assembly and further integration in thermonuclear community]. ICPAF-2022. Moscow, Plazmaiofan Publ., 2022, p. 40 (in Russ.).

[3] Michael F. Radioactivity. Introduction and history. Elsevier, 2007.

[4] Klimenko G.K., Kuzenov V.V., Lyapin A.A. et al. Raschet, modelirovanie i proektirovanie generatorov nizkotemperaturnoy plazmy [Calculation, modeling and design of low-temperature plasma generators]. Moscow, Bauman MSTU Publ., 2021 (in Russ.).

[5] Khvostenko P.P. Experimental thermonuclear installation Tokamak T-15MD. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion], 2019, vol. 42, no. 1, pp. 15–38. DOI: https://doi.org/10.21517/0202-3822-2019-42-1-15-38 (in Russ.).

[6] Alikaev V.V., Brevnov N.N. Programma fizicheskikh issledovaniy na ustanovke Tokamak-15 [Physical studies program for Tokamak-15 plant]. Moscow, IAE Publ., 1983 (in Russ.).

[7] Gott Yu.V., Kurnaev V.A. Na puti k energetike budushchego [On the way to future energetics]. Moscow, MIFI Publ., 2017 (in Russ.).

[8] Federici G. European DEMO design strategy and consequences for materials. Nucl. Fusion, 2017, vol. 57, no. 9, art. 092002. DOI: https://doi.org/10.1088/1741-4326/57/9/092002

[9] Krasilnikov A.V., Konovalov S.V., Bondarchuk E.N. et al. Tokamak with reactor technologies (TRT): concept, missions, key distinctive features and expected characteristics. Fizika plazmy, 2021, vol. 47, no. 11, pp. 970–985. DOI: https://doi.org/10.31857/S0367292121110196 (in Russ.). (Eng. version: Plasma Phys. Rep., 2021, vol. 47, no. 11, pp. 1092–1106. DOI: https://doi.org/10.1134/S1063780X21110192)

[10] Portnov D.V., Vysokikh Yu.G., Kashchuk Yu.A. et al. Tokamak with reactor technologies (TRT): preliminary analysis of nuclear energy release in toroidal field coils. Fizika plazmy, 2021, vol. 47, no. 12, pp. 1170–1176. DOI: https://doi.org/10.31857/S0367292121110238 (in Russ.). (Eng. version: Plasma Phys. Rep., 2021, vol. 47, no. 12, pp. 1285–1290. DOI: https://doi.org/10.1134/S1063780X21110234)

[11] Karpov D.A., Ivanov A.G., Livshits A.I. et al. Vacuum pumping system of TRT. Fizika plazmy, 2021, vol. 47, no. 12, pp. 1152–1169. DOI: https://doi.org/10.31857/S0367292121110196 (in Russ.). (Eng. version: Plasma Phys. Rep., 2021, vol. 47, no. 12, pp. 1267–1284. DOI: https://doi.org/10.1134/S1063780X21120023)

[12] Chirkov A.Yu., Ryzhkov S.V. Impact of intense thermal and neutron fluxes on the structural elements of fusion and fission reactors. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering], 2017, vol. 8, no. 6, pp. 513–522. DOI: https://doi.org/10.31857/S0367292121110196 (in Russ.).

[13] Ryzhkov S.V. Modeling of plasma physics in the fusion reactor based on a field-reversed configuration. Fusion Sci. Technol., 2009, vol. 55, no. 2T, pp. 157–161. DOI: https://doi.org/10.13182/FST09-A7004

[14] Chirkov A.Yu., Ryzhkov S.V., Bagryansky P.A. et al. Fusion modes of an axially symmetrical mirror trap with the high power injection of fast particles. Plasma Phys. Rep., 2012, vol. 38, no. 13, pp. 1025–1031. DOI: https://doi.org/10.1134/S1063780X12080090

[15] Kuzenov V.V., Ryzhkov S.V. Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure. Phys. Plasmas., 2019, vol. 26, no. 9, art. 092704. DOI: https://doi.org/10.1063/1.5109830

[16] Kuzenov V.V., Ryzhkov S.V. Plasma dynamics modeling of the interaction of pulsed plasma jets. Phys. Atom. Nuclei, 2018, vol. 81, no. 10, pp. 1460–1464. DOI: https://doi.org/10.1134/S106377881811011X