|

Application of optical methods in the study of gas flow in the gas exchange system of an internal combustion engine

Authors: Vyalikov D.V.
Published in issue: #12(53)/2020
DOI: 10.18698/2541-8009-2020-12-659


Category: Power, Metallurgic and Chemical Engineering | Chapter: Heat Engines

Keywords: piston engine, simulation, gas exchange processes, schlieren method, numerical method, wave processes, optical system, experimental stand
Published: 14.12.2020

Improving computational algorithms requires reliable experimental data, including in the field of modeling gas-dynamic processes in piston engines. This work evaluates the possibility of using the schlieren method to study wave processes in the gas exchange system of an internal combustion engine. A schematic diagram is presented of an experimental setup based on the schlieren method using a single spherical mirror. A numerical calculation of the gas flow in the intake manifold is carried out and graphical dependences of the gas temperature and density on the angle of rotation of the crankshaft of the piston engine are presented. The requirements for the equipment necessary for the study are determined and a comparison is made between the analogs that meet the requirements.


References

[1] Chaynov N.D., ed. Konstruirovanie dvigateley vnutrennego sgoraniya [Control on combustion engines]. Moscow, Mashinostroenie Publ., 2011 (in Russ.).

[2] Barchenko F.B., Bakulin V.N., Calculation of the thermal loading of the cylinder-piston group of the automobile engine. J. Eng. Phys. Thermophy., 2017, vol. 90, no. 3, pp. 657–664. DOI: https://doi.org/10.1007/s10891-017-1613-y

[3] Blinov A., Malastowski N., Myagkov L. Development of the model for a diesel engine catalytic converter. E3S Web Conf., 2019, vol. 140, art. 06013. DOI: https://doi.org/10.1051/e3sconf/201914006013

[4] Chainov N.D., Myagkov L.L., Malastowski N.S., et al. Integrated approach for stress analysis of high performance diesel engine cylinder head. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 327, no. 5, art. 052010. DOI: https://doi.org/10.1088/1757-899X/327/5/052010

[5] Winklhofer E. Optical access and diagnostic techniques for internal combustion engine development. J. Electron. Imaging, 2001, vol. 10, no. 3, art. 588. DOI: https://doi.org/10.1117/1.1375813

[6] Liu X., Fan Z., Liu F., et al. Optical experimental study on knock characteristics of hydrogen–air pre-mixture. Proc. IEEE ICDMA, 2010, pp. 54–59. DOI: https://doi.org/10.1109/ICDMA.2010.415

[7] Sankesh D., Lappas P. An experimental and numerical study of natural gas jets for direct injection internal combustion engines. Fuel, 2020, vol. 263, art. 116745. DOI: https://doi.org/10.1016/j.fuel.2019.116745

[8] Grishin Yu.A., Semenchukova V.S. [Numerical modelling of non-stationary flow in “pipeline-valve-volume system”]. Mat. XX Mezhd. konf. VMSPPS [Proc. XX Int. Conf. VMSPPS]. Moscow, MAI Publ., 2017, pp. 428–430 (in Russ.).

[9] Pavlov A.A., Pavlov Al.A., Golubev M.P. Use of self-induced Zernike filters based on saturation effect in gas flow Schlieren diagnostics. Vestnik NGU. Seriya: Fizika [Vestnik NSU. Series: Physics], 2014, vol. 9, no. 1, pp. 15–28 (in Russ.).

[10] Semenchukova V., Grishin Y., Malastowski N. Mathematical modeling of a piston engine pneumatic start. RusAutoCon., 2018. DOI: https://doi.org/10.1109/RUSAUTOCON.2018.8501794

[11] Grishin Yu.A., Semenchukova V.S. Primenenie nestatsionarnykh gazodinamicheskikh funktsiy v raschetnoy skheme chislennogo metoda raspada razryva [Using nonstationary gas-dynamic functions in computation scheme of numerical method for decay of discontinuity]. Mat. XXI Mezhd. konf. VMSPPS [Proc. XXI Int. Conf. VMSPPS]. Moscow, MAI, 2019, pp. 51–53 (in Russ.).

[12] Godunov S.K., Zabrodin A.V., Ivanov M.Ya., et al. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solution of gas dynamics multidimensional problems]. Moscow, Nauka Publ., 1976 (in Russ.).

[13] Abramovich G.N. Prikladnaya gazovaya dinamika. Ch.1 [Applied gas dynamics]. Moscow, Nauka Publ., 1991 (in Russ.).

[14] 3 watt Power LED. tds-led.com: website. URL: http://www.tds-led.com/product/html/?14.html (accessed: 15.10.2020).

[15] Holder D.W., North R.J. Schlieren methods. NPL notes on applied science. Vol. 31. Her Majesty’s Stationery Office, 1963.

[16] VEO 710. phantomhighspeed.com: website. URL: https://www.phantomhighspeed.com/products/cameras/veo/veo710 (accessed: 15.10.2020).

[17] Vysokoskorostnaya kamera Evercam 4000-128-M [Evercam 4000-128-M high-speed camera]. evercam.ru: website (in Russ.). URL: https://evercam.ru/produktsiya/7/217/ (accessed: 15.10.2020).

[18] FASTCAM SA-Z. photron.com: website. URL: https://photron.com/fastcam-sa-z/ (accessed: 15.10.2020).