|

Evaluation of the solar power stations operational efficiency increase due to the application of the solar batteries position control systems

Authors: Cheremukhin M.V., Shipovskiy A.V.
Published in issue: #3(20)/2018
DOI: 10.18698/2541-8009-2018-3-278


Category: Power, Metallurgic and Chemical Engineering | Chapter: Nuclear power plant

Keywords: solar energy, Helio Tracker, position control system, solar battery
Published: 06.03.2018

This work is devoted to the assessment of the solar batteries position control systems efficiency. It analyzes the problems of using the Helio Trackers. We present theoretical estimates of the power generation increase when using the solar tracking systems. To conduct the full-scale tests we have developed an installation for comparing the power generation efficiency of the orientable and static photoelectric transducers. Through the trials conducted we found out that for the central part of the country the application of the swivel bearing, enabling the solar batteries surface to orient, allows increasing the power generation by more than 35%. Furthermore, we give an opinion regarding the economic efficiency of using the tracking systems for monitoring the Sun position.


References

[1] Global Solar Market Demand to Reach 100 GW in 2017. Solar Power Europe. SolarPower Summit, Brussels, 7-8 March 2017.

[2] Petrusev A.S. MIP po proizvodstvu energoeffektivnykh solnechnykh ustanovok [Small innovative enterprise producing energy-effective solar stations]. Perspektivy razvitiya fundamental’nykh nauk: sbornik nauchnykh trudov XIII Mezhdunarodnoy konferentsii studentov, aspirantov i molodykh uchenykh. T. 5 [Development prospects of abstract sciences: proc. XIII Int. Conf. of Students, Aspirants and Young Scientists. Vol. 5]. Tomsk, TPU publ., 2016, pp. 184–186.

[3] Akhmadullin R.R. Perspektivy razvitiya proekta “solnechnaya energetika” v Rossii. Rol’ nauki v razvitii obshchestva [Development prospects of “solar energetics” project in Russia. In: Role of science in society development]. Ufa, AETERNA publ., 2015, pp. 24–27.

[4] Petrusev A.S., Yurchenko A.V. Effective method of increasing solar stations power. Fizika, 2014, no. 2 (960), pp. 4–8.

[5] Petrusev A.S. Development of energy-effective solar station. Izvestiya TPU, 2006, vol. 309, no. 7, pp. 172–176.

[6] Petrusev A.S. Povyshenie effektivnosti solnechnykh batarey s pomoshch’yu odnoosnogo trekera i akrilovogo kontsentratora [Raising efficiency of solar batteries using monoaxial tracker and acrylic concentrator]. Sovremennye tekhnika i tekhnologii: sbornik trudov XX mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh. T. 1 [Modern technique and technologies: proc. XX Int. Sci.-Practice Conf. of Students, Aspirants and Young Scientists]. Tomsk, TPU publ., 2014, pp. 37–38.

[7] Shinyakov Yu.A., Shurygin Yu.A., Arzhanov V.V., Osipov A.V., Teushchakov O.A., Arzhanov K.V. Stand-alone photovoltaic power plant with increased energy efficiency. Doklady TUSUR [Proceedings of TUSUR], 2011, no. 2 (24), P. 1, pp. 282–287.

[8] Rizk J., Chaiko Y. Solar tracking system: more efficient use of solar panels. World Academy of Science, Engineering and Technology, 2008, no. 41, pp. 313–315.

[9] Sarker M.R.I., Pervez M.R., Beg R.A. Design, fabrication and experimental study of a novel two-axis sun tracker. International Journal of Mechanical & Mechatronics Engineering, 2010, vol. 10, no. 01, pp. 13–18.

[10] Beckman W.A., Klein S.A., Duffie J.A. Solar heating design by the F-chart method. New York, John Wiley and Sons, 1977, 218 p. (Russ. ed.: Raschet sistem solnechnogo teplosnabzheniya. Moscow, Energoizdat publ., 1982, 80 p.)