Unperturbed motion simulation of the navigation satellite constellation
Authors: Tedeev G.I., Maslennikov A.L. | |
Published in issue: #11(40)/2019 | |
DOI: 10.18698/2541-8009-2019-11-551 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control |
|
Keywords: simulation, mathematical model, satellites, satellite constellation, unperturbed motion, global navigation satellite system, GPS, navigation satellites, ODE solving, numerical methods, Runge-Kutta methods |
|
Published: 18.11.2019 |
Nowadays, global navigation satellite systems are widely used to determine location of different objects. However, the end-user navigation data may suffer from huge errors, that are caused by the essential physical basics of GNSS functioning. In order to increase accuracy of the navigational data different algorithmic solutions could be applied. However, modeling of GNSS radio signals and satellites dynamics is required for testing and verification of such algorithms. In this paper the modeling of navigation satellite constellation is described. Satellites motion is considered to be unperturbed and passive. Simulation results are provided via special software with GUI written in MathWorks MATLAB.
References
[1] Mikrin E.A., Mikhaylov M.V. Navigatsiya kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh system [Spacecraft navigation using measurements from global satellite navigation systems]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).
[2] Mikrin E.A., Mikhaylov M.V. Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh system [Orientation, guidance, rendezvous and launch of spacecraft using measurements from global satellite navigation systems]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).
[3] Mikrin E.A., Mikhaylov M.V., Orlovskiy I.V., et al. Satellite navigation of lunar orbiting spacecraft and objects on the lunar surface. Giroskopiya i navigatsiya, 2019, no. 1, pp. 22–31 (in Russ.).
[4] Yatsenkov V.S Osnovy sputnikovoy navigatsii. Sistemy GPS NAVSTAR i GLONASS [Foundations of satellite navigation. GPS NAVSTAR and GLONASS systems]. Moscow, Goryachaya liniya-Telekom Publ., 2005 (in Russ.).
[5] Maslennikov A.L., Tsygankova I.S. Integration of actual and predicted GNSS data. JARITS, 2019, no. 14, pp. 130–135. DOI: 10.26160/2474-5901-2019-14-130-135 URL: http://srcms.ru/jarits/14/14-2-07.html (in Russ.).
[6] Neusypin K.A., Proletarskaya V.A., Alekseeva E.Yu. Algorithmic methods for correction of aircraft navigation systems. Inzhenernyy vestnik [Engineering Bulletin], 2013, no. 3. URL: http://engsi.ru/doc/547962.html (in Russ.).
[7] Neusypin K.A., Selezneva M.S., Proletarsky A.V., et al. Algorithm for building models of INS/GNSS integrated navigation system using the degree of identifiability. Proc. 25th St. Petersburg ICINS 2018, 2018, pp. 1–5.
[8] Klychnikov V.V., Selezneva M.S., Neusypin K.A., et al. Using the federal Kalman filter to correct aircraft navigation systems. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 9, pp. 428–432 (in Russ.).
[9] Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov [Ballistics and navigation of aircraft]. Moscow, Bauman MSTU Publ., 2016 (in Russ.).
[10] Amosov A.A., Dubinskiy Yu.A., Kopchenova N.V. Vychislitel’nye metody [Computational methods]. Moscow, ID MEI Publ., 2008 (in Russ.).
[11] Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M. Chislennye metody [Numerical methods]. Moscow, BINOM. Laboratoriya znaniy Publ., 2012 (in Russ.).
[12] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Modelling of space debris]. Moscow, IKI RAS Publ., 2013 (in Russ.).
[13] OOO “NAVIA”: company website (in Russ.). URL: http://naviawireless.ru/ (accessed: 18.07.2019).