Optimization of the spacecraft launch into orbit
Authors: Gorokhov I.E. | |
Published in issue: #7(48)/2020 | |
DOI: 10.18698/2541-8009-2020-7-628 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control |
|
Keywords: optimal control, spacecraft, launch into orbit, pitch angle, boundary value problem, geostationary orbit, Pontryagin’s maximum method, system of differential equations, optimality criterion, launch vehicle |
|
Published: 03.09.2020 |
A method of optimal launching of a spacecraft into a geostationary orbit is considered, which allows minimizing resource consumption. A mathematical model of the movement of the launch vehicle center of mass is presented. To search for the optimal control, the Pontryagin’s maximum method, dynamic programming method and method based on small variation of parameters. A method of searching for optimal control by varying a parameter is chosen. The following numerical methods for solving the boundary value problem have been studied: Newton’s method and its modifications; shooting method; finite difference method. Using the built-in MATLAB functions, the control law for the pitch angle and the trajectory of the launch vehicle in the equatorial plane is obtained. The simulation of the spacecraft motion using the classical fourth-order Runge-Kutta method with a constant integration step is carried out.
References
[1] Demenkov N.P. Vychislitel’nye aspekty resheniya zadach optimal’nogo upravleniya [Computation aspects of solving optimum control problems]. Moscow, Bauman MSTU Publ., 2007 (in Russ.).
[2] Demenkov N.P., Vasil’yev G.N. Upravlenie tekhnicheskimi sistemami [Control on technical systems]. Moscow, Bauman MSTU Publ., 2013 (in Russ.).
[3] Demenkov N.P. Vychislitel’nye metody resheniya zadach optimal’nogo upravleniya na osnove printsipa maksimuma Pontryagina [Computational methods for solving optimum control problems based on Pontriagin’s maximum principle]. Moscow, Bauman MSTU Publ., 2015 (in Russ.).
[4] Ivanov N.M., Martynov A.I. Dvizhenie kosmicheskikh letatel’nykh apparatov v atmosferakh planet [Motion of spacecraft in atmosphere of planets]. Moscow, Nauka Publ., 1985 (in Russ.).
[5] Konstantinov M.S., Min Teyn. A trajectory optimization method to solve a problem of spacecraft insertion into geostationary orbit using electric thrusters. Vestnik MAI [Aerospace MAI Journal], 2009, vol. 16, no. 5, pp. 282–290 (in Russ.).
[6] Konstantinov M.S., Min Teyn. [Developing scheme for geostationary orbit insertion of spacecraft using chemical transfer orbit stage and low thrust]. Mat. XLIV nauch. chten. pamyati K.E. Tsiolkovskogo [Proc. XLIV Sci. readings in memory of K.E. Tsiolkovsky]. Kaluga, 2009, pp. 119–120 (in Russ.).
[7] Konstantinov M.S., Min Teyn. [Optimization method for spacecraft injection trajectory to geostationary orbit using electric propulsion system]. Mat. XXXIV akadem. chten. po kosmonavtike [Proc. XXXIV Academ. readings on Aeronautics]. Moscow, 2010, pp. 119–120 (in Russ.).
[8] Letov A.M. Dinamika poleta i upravlenie [Flight dynamics and control]. Moscow, Nauka Publ., 1969 (in Russ.).
[9] Min Teyn. Optimizatsiya skhem vyvedeniya kosmicheskogo apparata na vysokie rabochie orbity. Diss. kand. tekh. nauk [Optimization of spacecraft insertion scheme to high working orbits. Kand. tech. sci. diss.]. Moscow, Mosk. aviats.-tekhnol. in-t Publ., 2010 (in Russ.).
[10] Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., et al. Matematicheskaya teoriya optimal’nykh protsessov [Mathematical theory of optimum processes]. Moscow, Nauka Publ., 1983 (in Russ.).
[11] Pupkov K.A., Shakhnazarov G.A. Elementy teorii sistem upravleniya letatel’nymi apparatami [Theory elements of aircraft control systems]. Moscow, Bauman MSTU Publ., 2015 (in Russ.).
[12] Lysenko L.N., ed. Upravlenie kosmicheskimi poletami [Management of space flights]. Moscow, Bauman MSTU Publ., 2009 (in Russ.).
[13] Vyvedenie kosmicheskogo apparata na orbitu [Insertion of spacecraft to the orbit]. helpiks.org: website (in Russ.). URL: https://helpiks.org/1-122920.html (accessed: 25.05.2019).
[14] SpaceX: website. URL: www.spacex.com (accessed: 25.05.2019).