|

Features of the use of Earth’s gravity models in applied problems of ballistics

Authors: Kolesnikova D.S.
Published in issue: #9(62)/2021
DOI: 10.18698/2541-8009-2021-9-737


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: total vector of gravitational field strength, anomalous gravitational field, general terrestrial ellipsoid, Krasovsky ellipsoid, Cleraud ellipsoid, model of the Earth’s figure, mathematical modeling, trajectory of an aircraft
Published: 23.09.2021

The author considered various gravitational models used in calculating the trajectories of movement of flying vehicles. A comparative analysis is carried out of approaches to determining the full vector of the gravitational field strength corresponding to various models approximating the Earth’s surface: a sphere, Krasovsky’s biaxial ellipsoid, and a common terrestrial ellipsoid. Mathematical models are proposed for calculating the acceleration of gravity according to the three considered methods. A mathematical model of the movement of a “surface-to-surface” class aircraft has been formed, which makes it possible to estimate the accuracy of hitting the area of the specified target for various gravity models. The estimation of methodological errors of the Earth models is carried out. Recommendations on the appropriateness of using a particular model are formulated.


References

[1] Lysenko L.N. Navedenie i navedenie i navigatsiya ballisticheskikh raket [Guidance and navigation of ballistic missiles]. Moscow, Bauman MSTU Publ., 2007 (in Russ.).

[2] Komarovskiy Yu.A. Ispol’zovanie razlichnykh referents-ellipsoidov v sudovozhdenii [Using different reference-ellipsoids in ship navigation]. Vladivostok, DVGMA Publ., 2000 (in Russ.).

[3] Andreev V.D. Teoriya inertsial’noy navigatsii. Avtonomnye sistemy [Theory of inertial navigation. Autonomous systems]. Moscow, Nauka Publ., 1966 (in Russ.).

[4] Grushinskiy N.P. Teoriya figury Zemli [Theory of Earth figure]. Moscow, Fizmatlit Publ., 1963 (in Russ.).

[5] Spetsializirovannyy spravochnik «Parametry Zemli 1990 goda» (PZ-90.11) [Specialized guidebook “Earth parameters of 1990 (PZ-90.11)”]. Moscow, Voenno-topograficheskoe upravlenie GSh VS RF Publ., 2020. (in Russ.).

[6] Zakharin M.I., Zakharin F.M. Kinematika inertsial’nykh sistem navigatsii [Kinematics of inertial navigation systems]. Moscow, Mashinostroenie Publ., 1968 (in Russ.).

[7] Anuchin O.N., Emel’yantsev G.I. Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnykh ob’’ektov [Integrated orientation and navigation systems for marine moving objects]. Sankt-Petersburg, TsNII Elektropribor Publ., 1999 (in Russ.).

[8] Grushinskiy N.P. Opredelenie sily tyazhesti na more [Determination of gravity force on the sea]. Moscow, Nedra Publ., 1970 (in Russ.).

[9] GOST 20058-80. Dinamika LA v atmosfere. Terminy, opredeleniya i oboznacheniya [State standard 20058-80. Aircraft dynamics in atmosphere. Terms, definitions and symbols]. Moscow, Izd-vo standartov Publ., 1981 (in Russ.).

[10] Kolesnikova D.S. Anomalies of the Earth’s gravitational field in applied problems of ballistics. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2021, № 6. DOI: http://dx.doi.org/10.18698/2541-8009-2021-06-709 (in Russ.).

[11] Demin V.M. Teoriya i praktika primeneniya kart v aviatsii [Theory and practice of using maps in aviation]. Moscow, Mashinostroenie Publ., 1969 (in Russ.).

[12] Zdanovich V.G., ed. Vysshaya geodeziya [Higher geodesy]. Moscow, Nedra Publ., 1970 (in Russ.).

[13] Chernobotarev G.A. Analiticheskie i chislennye metody nebesnoy mekhaniki [Analytical and numerical methods of celestial mechanics]. Moscow, Nauka Publ., 1965 (in Russ.).