|

The role of great data in the life cycle of the product. Modern approaches to management of great data

Authors: Kiseleva E.Yu., Fedotova A.V.
Published in issue: #8(25)/2018
DOI: 10.18698/2541-8009-2018-8-358


Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics

Keywords: product life cycle, big data processing, MapReduce, NoSQL, Hadoop, Disco, In-Memory, relational DBMS
Published: 08.08.2018

The article presents the purposes for which methods for managing large data at specific stages of the product life cycle (PLC) are defined. Three main periods of the PLC are analyzed and, according to them, examples of different types of input and output data are presented. Modern approaches to big data processing, including bypassing the use of the relational database management system (DBMS) are also presented. The paper considers the following approaches in managing big data: MapReduce, NoSQL, Hadoop, Disco. Approaches used by the DBMS, such as DBMS with vertical storage and In-memory DBMS, are considered. Particular attention is paid to Data Mining.


References

[1] Li J., Tao F., Cheng Y., Zhao L. Big Data in product lifecycle management. Int. J. Adv. Manuf. Technol., 2017, vol. 81, no. 1–4, pp. 667–684.

[2] Marfa E. Big data management, supplier management and information protection. Mashinostroenie i smezhnye otrasli, 2014, no. 4, pp. 38–40.

[3] Tabakov V.V., Fedotova A.V. Intellektualizatsiya tekhnologiy upravleniya bol’shimi dannymi [Intellectualization of big data management technology]. Intellektual’nye sistemy i tekhnologii: sovremennoe sostoyanie i perspektivy. Sb. nauch. tr. 3-y Mezhd. shkoly-seminara [Intellectual systems and technologies: contemporary state and prospects. Proc. 3rd Int. School-Workshop]. Tver’, TSTU publ., 2017, pp. 57–62.

[4] Woo T., Krensky P. Optimizing product lifecycle management using BigData analytics. Available at: http://aberdeen.com/research/11657/11657-rr-big-data-analytics/content.aspx (data obrashcheniya 18 April 2018).

[5] Hayes J. Using PLM to enable IoT and big data in an old industry. Available at: http://www.engineering.com/PLMERP/ArticleID/10908/Using-PLM-to-Enable-IoT-and-Big-Data-in-an-Old-Industry.aspx (accessed 18 April 2018).

[6] Fedotova A.V., Vetrov A.N., Tarasov V.B. Information granulation in life cycle modeling for complex technical systems. Naukovedenie, 2013, no. 5(18). Available at: http://naukovedenie.ru/PDF/53tvn513.pdf.

[7] Glushkov V.M. Osnovy bezbumazhnoy informatiki [Basics of paper-free informatics]. Moscow, Nauka publ., 1987, pp. 9–11.

[8] Tabakov V.V. SAP HANA: summa tekhnologii [SAP HANA: technology sum]. Available at: https://sapland.ru/kb/blogs/sap-hana-summa-tehnologii.html (accessed 05.02.2017).

[9] Analiz i ispol’zovanie dinamicheskikh dannykh: vvedenie v obrabotku slozhnykh sobytiy [Analysis and application of dynamic data: introduction into complex event processing]. Available at: http://docplayer.ru/51335498-Analiz-i-ispolzovanie-dinamicheskih-dannyh-vvedenie-v-obrabotku-slozhnyh-sobytiy.html (accessed 14 July 2017).

[10] Agregirovanie i gruppirovka dannykh [Data aggregation and grouping]. Available at: https://www.politerm.com/zuludoc/sql_aggreg.html?sphrase_id=23692 (accessed 20 January 2017).