|

Extended Kalman filter application to the nonlinear two-link pendulum model

Authors: Lysukho G.V., Maslennikov A.L.
Published in issue: #8(37)/2019
DOI: 10.18698/2541-8009-2019-8-513


Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics

Keywords: extended Kalman filter, Hybrid Kalman filter, nonlinear system, two-link pendulum, numerical differentiation, QR-decomposition, state estimation, estimation theory
Published: 20.08.2019

Various types of Kalman filter are typically used to estimate state vector of dynamical systems. Particularly for nonlinear systems the Extended or Sigma-point Kalman filter are widely, but both of them have practical limitations. Those limitations could lead to instability of the algorithm and to increasing of estimation error. In this paper, we present the practical realization of the first-order Extended Kalman filter that is addressing those limitations with purpose to estimate the state of the continuous-time nonlinear two-link pendulum model with discrete-time measurements. In this realization symmetry of a priory covariance matrix is guaranteed and computational efficiency is increased by utilizing numerical computation of Jacobi matrix and QR-decomposition in computing Kalman gain.


References

[1] Demenkov N.P. Statisticheskaya dinamika sistem upravleniya [Statistical dynamics of control systems]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).

[2] Demenkov N.P., Mikrin E.A. Upravlenie v tekhnicheskikh sistemakh. Moscow, Bauman MSTU Publ., 2017 (in Russ.).

[3] Kalman R.E. A new approach to linear filtering and prediction problems. J. Basic Eng., 1960, vol. 82, no. 1, pp. 35–45. DOI: 10.1115/1.3662552 URL: http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402

[4] Grewal M.S., Andrews A.P. Kalman filtering. Theory and practice using MATLAB. John Wiley & Sons, 2002.

[5] Haykin S. Kalman filtering and neural networks. John Wiley & Sons, 2001.

[6] Julier S.J., Uhlmann J.K. A new extension of the Kalman filter to nonlinear systems. Proc. SPIE, 1997, vol. 3068, pp. 182–194. DOI: 10.1117/12.280797 URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3068/1/New-extension-of-the-Kalman-filter-to-nonlinear-systems/10.1117/12.280797.short?SSO=1

[7] Ananthasayanam M.R., Mohan M.S., Gemson R.M.O., et al. A heuristic reference recursive recipe for adaptively tuning the Kalman filter statistics part-1: formulation and simulation studies. Sādhanā, 2016, vol. 41, no. 12, pp. 1473–1490. DOI: 10.1007/s12046-016-0562-z URL: https://link.springer.com/article/10.1007/s12046-016-0562-z

[8] Mohan S.M., Naik N., Gemson R.M.O., et al. Introduction to the Kalman filter and tuning its statistics for near optimal estimates and Cramer Rao Bound. Indian Academy of Sciences, 2015.

[9] Odelson B.J., Rajamani M.R., Rawlings J.B. A new autocovariance least-squares method for estimating noise covariances. Automatics, 2006, vol. 42, no. 2, pp. 303–308. DOI: 10.1016/j.automatica.2005.09.006 URL: https://www.sciencedirect.com/science/article/pii/S0005109805003262

[10] Shangareev A.T., Timakov S.N., Platonov V.N. The Kalman filter application to the problems of spacecraft berthing control. Kosmicheskaya tekhnika i tekhnologii [Space technique and technologies], 2016, no. 4, pp. 57–66 (in Russ.).

[11] Gage W.H., Winter D.A., Frank J.S., et al. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture, 2004, vol. 19, no. 2, pp. 124–132. DOI: 10.1016/S0966-6362(03)00037-7 URL: https://www.sciencedirect.com/science/article/abs/pii/S0966636203000377

[12] Aleksandrov A.V., Frolov A.A., Mas’on Zh. Strategy of equilibrium maintenance during human forward upper trunk bending on the narrow support. Rossiyskiy zhurnal biomekhaniki [Russian Journal of Biomechanics], 2002, no. 4, pp. 63–78 (in Russ.).

[13] Frogerais P., Bellanger J.-J., Senhadji L. Various ways to compute the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control, 2012, vol. 57, no. 4, pp. 1000–1004. DOI: 10.1109/TAC.2011.2168129 URL: https://ieeexplore.ieee.org/document/6018993

[14] Kulikov G.Y., Kulikova M.V. Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control, 2014, vol. 59, no. 1, pp. 273–279. DOI: 10.1109/TAC.2013.2272136 URL: https://ieeexplore.ieee.org/document/6553080

[15] Mehra R.K. On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control, 1970, vol. 15, no. 2, pp. 175–184. DOI: 10.1109/TAC.1970.1099422 URL: https://ieeexplore.ieee.org/document/1099422

[16] Yuanxi Y., Weiguang G. An optimal adaptive Kalman filter. J. Geodesy, 2006, vol. 80, no. 4, pp. 177–183. DOI: 10.1007/s00190-006-0041-0 URL: https://link.springer.com/article/10.1007%2Fs00190-006-0041-0