Developing the measuring system for controlling the mechanical engineering objects while in operation with the use of computer vision systems
Authors: Stukalova A.D. | |
Published in issue: #10(27)/2018 | |
DOI: 10.18698/2541-8009-2018-10-387 | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods |
|
Keywords: computer vision, brightness-geometric characteristic of the image, morphological analysis, the product surface, non-destructive control, shaft, video camera, surface defects |
|
Published: 16.10.2018 |
The article considers the issue of creating a control measuring system that allows analyzing the surface condition of the engineering industry products. We touch on the problems typical for the analysis of the objects’ surface condition in real-time mode. The work provides the mathematical treatment, through the use of which it is possible to analyze visual information transmitted to the computer from video camera. The authors introduce a system that allows making complex conclusion regarding the object’s surface condition, starting from the surface analysis, finding possible defect and finishing with estimating the nature of the imperfections region and deciding whether the detected imperfection is a defect or not. We present a model of the possible system of controlling the investigated object’s surface by means of stroboscope and video camera.
References
[1] Zakharov Yu.A., Remzin E.V., Musatov G.A. Analysis of main defects and restoration methods for “axis and axle” automobile parts. Molodoy uchenyy [Young Scientist], 2014, no. 20, pp. 138–140.
[2] Baykov A.I., Kiselev M.I., Komshin A.S., Pronyakin V.I., Rudenko A.L. Multi-factor information methodological maintenance of gydromachines exploitation based on phase-chronometric method. Gidrotekhnicheskoe stroitel’stvo, 2015, no. 2, pp. 2–8.
[3] Kuznetsov M.V. Sovremennye metody issledovaniya poverkhnosti tverdykh tel: fotoelektronnaya spektroskopiya i difraktsiya, STM-mikroskopiya [Modern research methods of solid bodies surface: fotoelectronic spectroscopy and diffraction. STM microscopy]. Ekaterinburg, Institut khimii tverdogo tela UrO RAS publ., 2010, 43 p.
[4] Kulichkov S.N., Chulichkov A.I., Demin D.S. Morfologicheskiy analiz infrazvukovykh signalov v atmosfernoy akustike [Morphologic analysis of infrasound signals in atmosphere acoustics]. Moscow, Novyy Akropol’ publ., 2010, 129 p.
[5] Pyt’yev Yu.P., Chulichkov A.I. Metody morfologicheskogo analiza izobrazheniy [Methods of morphological image analysis]. Moscow, Fizmatlit publ., 2010, 336 p.
[6] Gonzalez R.C., Woods R.E. Digital image processing. Prentice Hall, 2002, 793 p. (Russ. ed.: Tsifrovaya obrabotka izobrazheniy. Moscow, Tekhnosfera publ., 2005, 1072 p.)
[7] Vizil’ter Yu.V. Teoriya i metody morfologicheskogo analiza izobrazheniy. Diss. dok. fiz.-mat. nauk [Theory and methods of morphological image analysis. Doc. tech. sci. diss.]. Moscow, 2008, 275 p.
[8] Berthold K.P.H. Robot vision. The MIT Press, 1986, 522 p. (Russ. ed.: Zrenie robotov. Moscow, Mir publ., 1989, 487 p.)
[9] Ono Kh., Kodama T., Kosikhara T., Ogava A., Iidzuka Yu. Sposob obnaruzheniya defektov poverkhnosti i ustroystvo dlya obnaruzheniya defektov poverkhnosti [Method for recognition of surface defects and device for surface defects recognition]. Patent RF 2637723. Publ. 24.12.2014.
[10] Zadorin A.Yu. Avtomatizatsiya vizual’nogo kontrolya kachestva pechatnykh plat. Diss. kand. tekh. nauk [Automation of visual control on printed board quality. Kand. tech. sci. diss.]. Ekaterinburg, 2003, 147 p.