On the relation between radii and curvatures of mutually tangent spheres
Authors: Belkina E.V., Lesnykh N.S. | |
Published in issue: #8(13)/2017 | |
DOI: 10.18698/2541-8009-2017-8-147 | |
Category: Mathematics | Chapter: Computational Mathematics |
|
Keywords: determinant, plane, mutually tangent circles, spheres, curvature, Soddy's formula, radius, euclidean space |
|
Published: 12.07.2017 |
We supply a proof for the formula linking the radii of mutually tangent spheres and derive a generalized relation between the curvatures of the tangent spheres. We base our proof on the simplest properties of the determinant theory. In order to derive the connection between the curvatures of the tangent spheres, we invert the location of the spheres. By means of substituting known expressions for a single sphere, we obtain a subsidiary expression for the sum of squared dot products of a vector pointing from the centre of the system to an arbitrary point and vectors pointing from the centre of the system to the simplex vertices. We supply a proof that confirms the validity of generalising the formula to link the curvatures of spheres.
References
[1] Kokseter S.M. Vvedenie v geometriyu [Introduction to geometry]. Moscow, Nauka publ., 1966, pp. 29–31.
[2] Belozerov S.E. Pyat’ znamenitykh zadach drevnosti [Five famous problems of ancientry]. Rostov-na-Donu, Izdatelstvo Rostovskogo universiteta publ., 1975. 320 p.
[3] Voloshinov N.V. Matematika i iskusstvo [Mathematics and art]. Moscow, Prosveshchenie publ., 1992. 32 p.
[4] Coxeter H.S.M. Introduction to geometry. New York, Wiley, 1961. (Russ ed.: Vvedenie v geometriyu. Moscow, Nauka publ., 1966. 31 p.
[5] Kovalev M.D. On the curvatures of tangent spheres. Trudy MIAN SSSR, 1991, vol. 195, pp. 90–92. (Eng. version: Proceedings of the Steklov Institute of Mathematics, 1992, vol. 196, pp. 99–102.
[6] Shchukina G.I. Problema poznavatel’nogo interesa v pedagogike: poznavatel’nyy interes kak sredstvo obucheniya. Khrestomatiya po pedagogike [Cognition interest problem in pedagogics: cognition interest as a teaching medium. In: Pedagogics chrestomathy]. Moscow, Prosveshchenie publ., 1976, pp. 353–357.
[7] Erdniev P.M. Ukrupnenie didakticheskikh edinits kak tekhnologiya obucheniya. Ch. 2 [Teaching units enlargement as a training technology. P. 2]. Moscow, Prosveshchenie publ., 1992. 255 p.
[8] Sidnyaev N.I., Feoktistov V.V. Lineynye i evklidovy prostranstva [Linear and Euclidean spaces]. Moscow, Bauman Press, 2008. 71 p.