|

Numerical and analytical solution of the equation for the probability-density function

Authors: Klochkov A.K.
Published in issue: #3(20)/2018
DOI: 10.18698/2541-8009-2018-3-270


Category: Mathematics | Chapter: Computational Mathematics

Keywords: probability-density function, difference scheme, conservative scheme, approximation, equilibrium, convectional summand
Published: 27.02.2018

The article suggests a computational solution of the closed-form equation for the probability-density function (PDF) of the particles velocity distribution in the gas velocity random field. The particles motion occurs only due to the influence of the resistance force written in the Stokes approximation. We introduce an analytical solution for the PDF though the Green’s function of the Fokker-Plank-Kolmogorov equation. The numerical quadrature method is based on the conservative difference scheme of the first accuracy order in time and of the second order in velocity. The results of the numerical quadrature are collated with the analytical solution. We compare two difference schemes approximating the convectional summand: central differences and upwind differences.


References

[1] Kuznetsov V.R., Sabel’nikov V.A. Turbulentnost’ i gorenie [Turbulence and combustion]. Moscow, Fizmatlit publ., 1986, 288 p.

[2] Tikhonov V.I., Mironov M.A. Markovskie protsessy [Markov processes]. Moscow, Sovetskoe radio publ., 1977, 488 p.

[3] Levi P. Stokhasticheskie protsessy i brounovskoe dvizhenie [Stochastic processes and Brownian motion]. Moscow, Nauka publ., 1972, 376 p.

[4] Khorstkhemke V., Lefevr R. Indutsirovannye shumom perekhody: Teoriya i primenenie v fizike, khimii, biologii [Noise induced transitions: theory and application in physics, chemistry, biology]. Moscow, Mir publ., 1987, 400 p.

[5] Terekhov V.I., Pakhomov M.A. Teplomassoperenos i gidrodinamika v gazokapel’nykh potokakh [Heat and mass transfer in gas-droplet flows]. Novosibirsk, NSTU publ., 2008, 283 p.

[6] Risken H. The Fokker-Planck equation. Berlin, Springer publ., 1989, 472 p.

[7] Ho C., Sasaki R. Extensions of a class of similarity solutions of Fokker-Planck equation with time-dependent coefficients and fixed/moving boundaries. Journal of Mathematical Physics, 2013, vol. 55, no. 11, pp. 1–7.

[8] Libby P.A., Bilger R.W., Williams F.A. Turbulent reacting flows. New York, Springer publ., 1980, 246 p.

[9] Klyatskin V.I. Stokhasticheskie uravneniya i volny v sluchayno-neodnorodnykh sredakh [Stochastic equations and waves in random medium]. Moscow, Nauka publ., 1980, 336 p.

[10] Klyatskin V.I., Gurariy D. Coherent phenomena in stochastic dynamical systems. Uspekhi fizicheskikh nauk, 1999, vol. 169, no. 2, pp. 171–207. (Eng. version: Physics–Uspekhi, 1999, vol. 42, no. 2, pp. 165–198.)

[11] Hasegawa H. A moment approach to non-Gaussian colored noise. Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, no. 2, pp. 241–258.

[12] Hasegawa H. Dynamics of the Langevin model subjected to colored noise: functional-integral method. Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, no. 12, pp. 2697–2718.

[13] Hasegawa Y., Arita M. Noise-intensity fluctuation in Langevin model and its higher-order Fokker-Planck equation. Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, no. 6, pp. 1051–1063.

[14] Haworth D.C. Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 2010, vol. 36, no. 2, pp. 168–259.

[15] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka publ., 1977, 736 p.

[16] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N. Priblizhennye metody matematicheskoy fiziki [Approximate methods of mathematical physics]. Moscow, Bauman Press, 2001, 700 p.

[17] Fletcher C.A.J. Computational techniques for fluid dynamics. Springer, 1988, 409 p., 484 p. (Russ. ed: Vychislitel’nye metody v dinamike zhidkostey: v 2 t. Moscow, Mir publ., 1991, 504 p., 552 p.)

[18] Roache P.J. Computational fluid dynamics. Hermosa Publishers, 1976, 446 p. (Russ. ed.: Vychislitel’naya gidrodinamika. Moscow, Mir publ., 1980, 616 p.)

[19] Shih T.M. Numerical heat transfer. CRC Press, 1984, 563 p. (Russ. ed.: Chislennye metody v zadachakh teploobmena. Moscow, Mir publ., 1988, 544 p.)

[20] Samarskiy A.A. Raznostnye metody resheniya zadach gazovoy dinamiki [Difference methods of solving gas dynamics problems]. Moscow, Nauka publ., 1980, 352 p.

[21] Marchuk G.I. Metody vychislitel’noy matematiki [Methods of computational mathematics]. Moscow, Nauka publ., 1980, 536 p.

[22] Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Solution method for finite-difference equations]. Moscow, Nauka publ., 1978, 592 p.