SIR epidemic model taking into account the spatial heterogeneity of the location of individuals
Authors: Razumov T.E. | |
Published in issue: #6(35)/2019 | |
DOI: 10.18698/2541-8009-2019-6-490 | |
Category: Mathematics | Chapter: Computational Mathematics |
|
Keywords: SIR model, homogeneous model, heterogeneous model, population, state probability, Markov chain, pandemic, epidemic modeling |
|
Published: 10.06.2019 |
In this paper, the author showed based on Markov chains method a generalization of the classical homogeneous SIR model to the case of a spatial non-uniform distribution of individuals (heterogeneous model). The state of each individual is determined by the probabilities of being in the three groups of the SIR model. The decrease in the intensity of infection with increasing distance between individuals is taken into account; the characteristic time of virus degeneration inside the individual is taken into account. The author presented the results of numerical modeling of the development of infectious diseases for different ways of placing susceptible and infected individuals. Based on numerical modeling, the author showed a fundamental difference in the epidemic scenarios for homogeneous and heterogeneous models.
References
[1] Riznichenko G.Yu. Matematicheskie modeli v biofizike i ekologii [Mathematical models in biophysics and ecology]. Moscow– Izhevsk, IKI Publ., 2003 (in Russ.).
[2] Brauer F., Castillo-Chavez C. Mathematical models in population biology and epidemiology. Springer, 2012.
[3] Mishchenko E.L, Petrovskaya O.V., Mishchenko A.M., et al. Integrated mathematical models for describing complex biological processes. Biofizika, 2017, vol. 62, no. 5, pp. 949–968. (in Russ.). (Eng. version: Biophysics, 2017, vol. 62, no. 5, pp. 778–795. DOI: 10.1134/S0006350917050141 URL: https://link.springer.com/article/10.1134/S0006350917050141)
[4] Zou L., Zhang W., Ruan S. Modeling the transmission dynamics and control of hepatitis B virus in China. Math. Biosci., 2017, vol. 286, pp. 65–93. DOI:10.1016/j.jtbi.2009.09.035 URL: https://www.sciencedirect.com/science/article/pii/S0022519309004731
[5] Mollison D., ed. Epidemic models: their structure and relation to data. Cambridge University Press, 1995.
[6] Magiorkinis G., Angelis K., Mamais I., et al. The global spread of HIV-1 subtype B epidemic. Infect. Genet. Evol. 2016, vol. 46, pp. 169–179. DOI: 10.1016/j.meegid.2016.05.041 URL: https://www.sciencedirect.com/science/article/pii/S1567134816302234
[7] Junqueira D.M., de Matos Almeida S.E. HIV-1 subtype B: traces of a pandemic. Virology, 2016, vol. 495, pp. 173–184. DOI: 10.1016/j.virol.2016.05.003 URL: https://www.sciencedirect.com/science/article/pii/S0042682216301039
[8] Al-Darabsah I., Yuan Y. A time-delayed epidemic model for Ebola disease transmission. Appl. Math. Comput., 2016, vol. 290, pp. 307–325. DOI: 10.1016/j.amc.2016.05.043 URL: https://www.sciencedirect.com/science/article/abs/pii/S0096300316303526
[9] Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A Math. Phy., 1927, vol. 115, no. 772, pp. 700–721. DOI: 10.1098/rspa.1927.0118 URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1927.0118
[10] Wang Z., Bauch C.T., Bhattacharyya S., et al. Statistical physics of vaccination. Phys. Rep., 2016, vol. 664, pp. 1–113. DOI: 10.1016/j.physrep.2016.10.006 URL: https://www.sciencedirect.com/science/article/pii/S0370157316303349
[11] Zhao D., Sun J., Tan Y., et al. An extended SEIR model considering homepage effect for the information propagation of online social networks. Phys. A Stat. Mech. Appl., 2018, vol. 512, pp. 1019–1031. DOI: 10.1016/j.physa.2018.08.006 URL: https://www.sciencedirect.com/science/article/pii/S0378437118309464