On the liquid added mass under the oscillations of the elastic rod floating on the aquatorium surface
Authors: Merinova V.E. | |
Published in issue: #3(20)/2018 | |
DOI: 10.18698/2541-8009-2018-3-283 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body |
|
Keywords: elasticity, beam, liquid, oscillations, frequencies, potential, Laplacian equation, Fourier method, Grammel’s method |
|
Published: 19.03.2018 |
The article introduces the approximate solution to the problem of estimating the liquid added mass as well as the solution to the plane boundary value problem of small transverse oscillations of the specified length elastic rod floating on the aquatorium surface. In this connection we consider the liquid to be ideal and incondensable, its flowing — potential, and the oscillations — small. Subject to these assumptions and based on the method of eigen functions for the Laplasian operator we have obtained an analytical solution for the frequency of the first current of the system oscillations.
References
[1] Feodos’yev V.I. Soprotivlenie materialov [Strength of materials]. Moscow, Bauman Press, 2016, 543 p.
[2] Kolesnikov K.S., Dubinin V.V, ed. Kurs teoreticheskoy mekhaniki [Theoretical mechanics course]. Moscow, Bauman Press, 2017, 580 p.
[3] Kochin N.E., Kibel’ I.A., Roze N.V. Teoreticheskaya gidromekhanika. Ch. 2 [Theoretical hydromechanics. P. 2]. Moscow, Al’yans publ., 2016, 727 pp.
[4] Pozhalostin A.A. Osesimmetrichnye kolebaniya uprugikh bakov s zhidkost’yu [Axial-symmetrical oscillations of flexible tank with liquid]. Tr. VII Vses. konf. po teorii obolochek i plastinok [Proc. VII Russ. Conf. on Shells and Plates Theory]. Moscow, Nauka publ., 1970, pp. 483–487.
[5] Balabukh L.I. Nekotorye tochnye resheniya zadachi o kolebaniya zhidkosti v uprugikh obolochkakh [Some accurate solutions of problem of liquid oscillations in flexible shells]. Tr. V Vses. konf. po teorii plastin i obolochek [Proc. V Russ. Conf. on Shells and Plates Theory]. Moscow, Nauka publ., 1965, pp. 68–72.
[6] Pozhalostin A.A. Postroenie sistemy garmonicheskikh funktsiy dlya rascheta osesimmetrichnykh kolebaniy zhidkosti v uprugom tsilindricheskom bake s zhidkost’yu [Solution of harmonic functions system for calculating liquid oscillations in flexible cylindrical tank]. Moscow, VIMI publ., 1987, рр. 71–74.
[7] Timoshenko S., Young D.H., Weaver W. Vibration problems in engineering. Wiley, 1974, 521 p. (Russ. ed.: Kolebaniya v inzhenernom dele. Moscow, Mashinostroenie publ., 1985, 472 p.)
[8] Leybenzon L.S. O natural’nykh periodakh kolebaniy plotiny, podpirayushchey reku [On natural periods of the river dam oscillations]. Sb. trudov AN SSSR. T.1 [Proc. USSR Academy of Science. Vol. 1]. Moscow, AN SSSR publ., 1951, pp. 157–161.
[9] Balabukh L.I., Molchanov A.G. Axial-symmetrical oscillations of the spherical shell partially filled with liquid. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1967, no. 5, pp. 22–26.
[10] Nikitin N.N. Kurs teoreticheskoy mekhaniki [Theoretical mechanics course]. Sankt-Petersburg, Lan’ publ., 2016, 719 pp.