|

Creation of mass-sensitive piezoelectric elements by the method of pulsed laser deposition

Authors: Krivosheev A.V., Ponomarenko S.L.
Published in issue: #6(35)/2019
DOI: 10.18698/2541-8009-2019-6-492


Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing

Keywords: pulsed laser deposition, dust sensor, mass-sensitive sensor, quartz microbalance, quartz resonator, environment pollution, thin-film coating, measurement of the thickness of thin films
Published: 19.06.2019

In this paper, the authors indicated the problem of the accuracy of environmental pollution control. The authors described the problem of existing measuring instruments that are based on a quartz piezo element. The advantages of quartz microbalances over other methods of measuring concentration are given. The authors showed the design of the quartz mass-sensitive sensor and proposed a method of its production — pulsed laser deposition, and indicated the advantages of the methods over analogs. The described experiment was carried out on the installation NanoFab 100. The characteristics of the experiment are indicated such as the number of pulses, pulse repetition rate, pressure in the chamber, distance between the target and the substrate. In addition, the authors presented the table with the results of measuring the natural oscillation frequency of a resonator before and after applying a coating on it. The obtained values of the mass and thickness of the deposited layer are indicated. The possibilities of determining the concentration of a substance in the medium are noted.


References

[1] A.P. Konstantinov. Ecology and health: mythical and real danger. Ekologiya i zhizn’, 2012, no. 9, pp. 82–86 (in Russ.).

[2] Smurov A.V., Snakin V.V., Komarova N.G., et al. Ekologiya Rossii [Russian ecology]. Moscow, Akademiya Publ., 2012 (in Russ.).

[3] Analizator pyli «Atmas». Pasport BVEK 610000.001 PS [“Atmas” Dust analyzer. BVEK 610000.001 PS certificate]. Moscow, 2016 (in Russ.).

[4] Vozdeystvie dispersnogo veshchestva na zdorov’ye cheloveka [Effect of dispersed material on human health]. unece.org: website (in Russ.). URL: https://www.unece.org/fileadmin/DAM/env/documents/2012/EB/ECE_EB_AIR_2012_18_R.pdf (accessed: 18.02.2019).

[5] Cheng M., Chui H., Yang C. The effect of coarse particles on daily mortality: a case –crossover study in a subtropical city, Taipei, Taiwan. Int. J. Environ. Res. Public Health, 2016, vol. 13, no. 3, p. 347. DOI: 10.3390/ijerph13030347 URL: https://www.mdpi.com/1660-4601/13/3/347

[6] Kan H., London S.J., Chen G. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int., 2007, vol. 33, no. 3, pp. 376–384. DOI: 10.1016/j.envint.2006.12.001 URL: https://www.sciencedirect.com/science/article/pii/S0160412006002108

[7] V 2015 godu srednyaya kontsentratsiya vzveshennykh chastits RM2.5 v vozdukhe v Pekine snizilas’ na 6,2 prots [In 2015 average concentration of RM2.5 suspended particles in air of Pekin reduced by 6.2%]. russian.news.cn: website (in Russ.). URL: http://russian.news.cn/2016-01/05/c_134978768.htm (accessed: 18.02.2019).

[8] Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Physik, 1959, vol. 155, no. 2, pp. 206–222. DOI: 10.1007/BF01337937 URL: https://link.springer.com/article/10.1007%2FBF01337937

[9] Kanazawa K.K., Gordon J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem., 1985, vol. 57, no. 8, pp. 1770–1771. DOI: 10.1021/ac00285a062 URL: https://pubs.acs.org/doi/abs/10.1021/ac00285a062#

[10] Kellner R., Mermet J.- M., Otto M., et al. (eds.) Analytical Chemistry. Wiley, 1998. (Russ. ed.: Analiticheskaya khimiya. Problemy i podkhody. Moscow, Mir Publ., 2004.)

[11] Panfilov Yu.V. Depositing thin films in vacuum. Tekhnologii v elektronnoy promyshlennosti, 2007, no. 3, pp. 76–80 (in Russ.).

[12] Krivosheev A.V., Ponomarenko S.L. Obtaining the thin diamond-like films by means of the pulsed laser deposition method and examining their properties. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2018, no. 6. DOI: 10.18698/2541-8009-2018-6-324 URL: http://ptsj.ru/catalog/menms/tempp/324.html (in Russ.).

[13] Bulaev S.A. Nature of pulse laser deposition in vacuum as a way of producing films of nanometer thickness. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 18, pp. 25–27 (in Russ.).

[14] Labin L.A., Bulychev A., Kazaryan M.A., et al. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment. XII Int. Conf. Atomic and Molecular Pulsed Lasers. DOI: 10.1117/12.2225207 URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9810/1/Possibilities-of-using-pulsed-lasers-and-copper-vapour-laser-system/10.1117/12.2225207.short?SSO=1

[15] Eason R., ed. Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, 2006.

[16] Libenson M.N., Yakovlev E.B., Shandybina G.D., ed. Vzaimodeystvie lazernogo izlucheniya s veshchestvom (silovaya optika). Ch. II. Lazernyy nagrev i razrushenie materialov [Interaction between laser emission and material (power optics). P. II. Laser heating and destruction of material]. Sankt-Petersburg, NIU ITMO Publ., 2014 (in Russ.).

[17] Grigor’yants A.G., Shiganov I.N., Misyurov A.I. Tekhnologicheskie protsessy lazernoy obrabotki [Technological processes of laser processing]. Moscow, Bauman MSTU Publ., 2006 (in Russ.).