|

Comparing the techniques of increasing the suction capacity in the cryogenic pump by means of the computational modeling method

Authors: Belyaev V.A.
Published in issue: #8(25)/2018
DOI: 10.18698/2541-8009-2018-8-367


Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units

Keywords: hydraulic machine, pump manufacture, gasification, cavitation, suction head, cryogenic pump, hydrodynamic simulation, suction capacity
Published: 10.09.2018

When the cryogenic vane pump of low specific speed is operating, the cavitation phenomenon often occurs. By the example of a particular cryogenic pump this article considers and estimates the techniques of increasing the suction capacity using computational modeling. The method under consideration allows carrying out research quickly and without costly experiments, which is very important in the modern pump manufacture industry. The work provides examples of the basic approaches to calculating the parameters characterizing the cavitational properties of vane hydraulic machines. Based on the Rayleigh — Plesset model we have constructed particular cavitation characteristics for various models of the cryogenic pump’s liquid end and evaluated the results.


References

[1] Petrov A.I., Isaev N.Yu. Hydrodynamic modelling of centrifugal pump in the field of negative feeds. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/60-gidrodinamicheskoe-modelirovanie-raboty-tsentrobezhnogo-nasosa-v-zone-otritsatelnykh-podach.

[2] Petrov A.I., Isaev N.Yu. Study of the work of a vane-type pump in the area of adverse feeds by methods of hydrodynamic modeling. Nauchnoe obozrenie [Science Review], 2017, no. 13, pp. 74–78.

[3] Petrov A.I., Valiev T.Z. Calculation of the process of starting a centrifugal pump using methods of computational fluid dynamics. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/59-raschet-protsessa-puska-tsentrobezhnogo-nasosa-metodami-gidrodinamicheskogo-modelirovaniya.

[4] Petrov A.I. Method of continuous definition of impeller pump characteristics at fluctuating temperature and hydraulic fluid viscosity in process of test in low-pressure chamber. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 10. Available at: http://engsi.ru/doc/850931.html.

[5] Petrov A.I. System of thermal balance maintenance in modern test benches for centrifugal pumps. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya [Machines and Plants: Design and Exploiting], 2015, no. 5. Available at: http://maplants.elpub.ru/jour/article/view/24.

[6] Artemov A.V., Petrov A.I. Modern trends of developing test bench constructions for impeller pump. Inzhenernyy vestnik [Engineering Bulletin], 2012, no. 11. Available at: http://engsi.ru/doc/500480.html.

[7] Petrov A.I., Aruvelli S.V. Modern development trends for pumps for liquid-cooling system of onboard and ground radio-electronic equipment. Inzhenernyy vestnik [Engineering Bulletin], 2015, no. 11. Available at: http://engsi.ru/doc/820059.html.

[8] Petrov A.I., Troshin G.A. Modification method for flow channel of oil export pumps of MN-type. Inzhenernyy vestnik [Engineering Bulletin], 2014, no. 11. Available at: http://engsi.ru/doc/744967.html.

[9] Cheremushkin V.A., Lomakin V.O. Influence of velocity curves unevenness on the centrifugal pump head. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya [Machines and Plants: Design and Exploiting], 2017, no. 1. Available at: http://maplants.elpub.ru/jour/article/view/54.

[10] Lomakin V.O., Bibik O.Yu. The influence of empirical rates (values) in the Releya-Plesett’s model on the cavitation calculated characteristics of the centrifugal pump. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/53-vliyanie-empiricheskikh-koeffitsientov-v-modeli-releya-plesetta-na-raschetnye-kavitatsionnye-kharakteristiki-tsentrobezhnogo-nasosa.

[11] Lomakin V.O., Kalmykov P. V. A methodology of investigation of the influence of coatings on piping friction. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/61-metodika-issledovaniya-vliyaniya-pokrytij-truboprovodov-na-poteri-davleniya.

[12] Gus’kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Meditsinskaya tekhnika, 2017, no. 4(304), pp. 1–4. (Eng. version: Biomedical Engineering, 2017, vol. 51, no. 4, pp. 229–233.)

[13] Lomakin V.O., Kukushkin P.A., Krylov V.I. Modernization of auxiliary cooling circuit of a magnetic coupling. Territoriya Neftegaz [Oil and Gas Territory], 2017, no. 7-8, pp. 84–91.

[14] Lomakin V.O., Cheremushkin V.A. Impact of impeller blade shape on impeller pump head. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 1. Available at: http://ainjournal.ru/doc/832881.html.

[15] Lomakin V.O., Kuleshova M.S., Chaburko P.S., Baulin M.N. Complex wet end part optimization of hermetic pump with LP-TAU method. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2016, no. 1, pp. 55–61.

[16] Gus’kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Assessment of hemolysis in a ventricular assist axial flow blood pump. Meditsinskaya tekhnika, 2016, no. 4, pp. 12–15. (Eng. version: Biomedical Engineering, 2016, vol. 50, no. 4, pp. 233–236.)