Research of dynamic characteristics of axial-piston pump with inclined disc and pressure regulator
Authors: Lysanov A.B., Siukhin M.V. | |
Published in issue: #9(50)/2020 | |
DOI: 10.18698/2541-8009-2020-9-643 | |
Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units |
|
Keywords: axial piston pump, pressure regulator, transient process, dynamic characteristics, mathematical model, inclined disc, positive displacement pump control, flow rate characteristic |
|
Published: 20.10.2020 |
The paper presents a mathematical model of a test hydraulic system with an axial piston pump with an inclined disc and a pressure regulator. The authors propose the analysis of a mathematical model using a block diagram in an automated calculation program SimInTech. Transient processes in the hydraulic system have been obtained during abrupt closing and opening of the throttle simulating the load. The calculation showed that the pressure regulator has a speed sufficient for the system and qualitatively performs the main functions, coping with maintaining the pressure in the design range with a sharp change in the load from the consumer. Technological limits of the piston stroke that were added to the design allow to limit the range of the piston stroke and increase the speed of the system.
References
[1] Byval’d M.E. Investigation of the operation of the pressure regulator of an axial-piston pump with an inclined block. Gidravlika, 2018, no. 6. URL: http://hydrojournal.ru/images/JOURNAL/NUMBER6/Bivald.pdf (in Russ.).
[2] Borovin G.K., Popov D.N. Mnogokriterial’naya optimizatsiya gidrosistem [Milticriteria optimization of hydraulic systems]. Moscow, Bauman MSTU Publ., 2007 (in Russ.).
[3] Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and regulation of hydraulic and pneumatic systems]. Moscow, Mashinostroenie Publ., 1976 (in Russ.).
[4] Popov D.N. Raschet i proektirovanie sledyashchego elektrogidravlicheskogo privoda s drossel’nym regulirovaniem [Calculation and design of tracking electro hydraulic drive with throttle control]. Moscow, Bauman MSTU Publ., 1990 (in Russ.).
[5] Tsyganov A.S., Perfil’yev A.V. Research of dynamic characteristics of the pressure regulator of axial piston pump. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2018, no. 7. DOI: http://dx.doi.org/10.18698/2541-8009-2018-7-354 (in Russ.).
[6] Fomichev V.N. Proektirovanie tsilindricheskikh zolotnikovykh raspredeliteley sledyashchikh elektrogidravlicheskikh privodov [Design of sleeve valve for tracking electro hydraulic drives]. Moscow, Bauman MSTU Publ., 2009 (in Russ.).
[7] Borovin G.K., Kostyuk A.V., Platonov A.K. Mathematical modelling of hydraulic control drive for walking machine. Matematicheskie mashiny i sistemy [Mathematical Machines and Systems], 2009, no. 4, pp. 127–138 (in Russ.).
[8] Bashta T. M. Gidroprivod i gidropnevmoavtomatika [Hydraulic drive and hydraulic and pneumatic control systems]. Moscow, Mashinostroenie Publ., 1972 (in Russ.).
[9] Lewis E.E., Stern H. Design of hydraulic control systems. McGraw-Hill, 1962.
[10] Frolov K.V., ed. Mashinostroenie. Entsiklopediya. T. IV-2. Kn. 2. Gidro- i vibroprivody [Mechanical Engineering Encyclopedia. Vol. IV-2. P. 2. Hydro- and vibratory drives]. Moscow, Mashinostroenie Publ., 2012 (in Russ.).
[11] Andreev M.A., Semenov S.E. Correction of regulator’s dynamic characterisitcs in axial piston pump with electric proportional control. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2012, no. 12. DOI: http://dx.doi.org/10.7463/0113.0516044 (in Russ.).
[12] Finzel R. Elektrohydraulische Steuerungssysteme für mobile Arbeitsmaschinen. Schaker, 2011.