Numerical solution of theproblem of steady fluid flow in a flat slotted gap
Authors: Alekseev D.I. | |
Published in issue: #10(63)/2021 | |
DOI: 10.18698/2541-8009-2021-10-744 | |
Category: Power, Metallurgic and Chemical Engineering | Chapter: Nuclear power plant |
|
Keywords: layered motion, density, dynamic viscosity, numerical methods, boundary conditions, checkerboard mesh, pressure gradient, solution convergence |
|
Published: 16.11.2021 |
For a flow in channels of simple geometry, the solution of the Navier-Stokes equations can be obtained analytically. However, for most practically important cases of flow in complex technical objects, their solution can only be obtained using numerical methods. This approach has been implemented in this article on the example of a flat layered stabilized flow in a channel. To implement this task on the basis of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, a program in the Pascal language was created, which, obtains a convergent solution with an 2% accuracy by an iterative method. Based on the results of the work, a comparison of the numerical solution with the exact one is carried out.
References
[1] Temam R. Navier–Stokes equations: theory and numerical analysis. AMS Chelsea Publ., 1984. (Russ. ed.: Uravneniya Nav’ye-Stoksa. Teoriya i chislennyy analiz. Moscow, Mir Publ., 1981.)
[2] Kharlamov S.N. Algoritmy pri modelirovanii gidrodinamicheskikh protsessov [Algorithms at modelling of hydrodynamic processes]. Tomsk, Izd-vo TPU Publ., 2008 (in Russ.).
[3] Aleksandrov D.V., Zubarev A.Yu., Isakova L.Yu. Vvedenie v gidrodinamiku [Introduction into the hydrodynamics]. Ekaterinburg, Izd-vo Ural’skogo universiteta Publ., 2012 (in Russ.).
[4] Patankar S.V. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti [Numerical methods for solving heat exchange problems and fluid dynamics]. Moscow, Energoatomizdat Publ., 1984 (in Russ.).
[5] Schlichting H., Gersten K. Grenzschicht-Theorie. Karlsruhe, G. Braun, 1982. (Russ. ed.: Teoriya pogranichnogo sloya. Moscow, Nauka Publ., 1969.)
[6] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 4. Gidrodinamika [Theoretical physics. Vol. 4. Hydrodynamics]. Moscow, Nauka Publ., 1986 (in Russ.).
[7] Anderson J.D. Computational fluid dynamics. McGraw-Hill, 1995. (Russ. ed.: Vychislitel’naya gidromekhanika i teploobmen. T. 1. Moscow, Mir Publ., 1990.)
[8] Zaytsev V.V. Chislennye metody dlya fizikov. Priblizhenie funktsiy i obrabotka dannykh [Numerical methods for physicists. Functional approximations and data processing]. Samara, Samarskiy universitet Publ., 2014 (in Russ.).