|

The development of a complex simulation stand of an air defence guided missile flight angular dynamics

Authors: Vedenichev I.V., Saitova Z.G.
Published in issue: #3(32)/2019
DOI: 10.18698/2541-8009-2019-3-458


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: sinulation stand, air defence guided missile, Arduino, MATLAB, Simulink, 3D printer, angular missile dynamics, control system
Published: 01.04.2019

The creation and practical use of a complex-simulation stand of angular dynamics of an air defence guided missile is considered. The dimensional drawing of the simulation stand is introduced. The description of the devices that set the rocket model in motion is given. The imitation of rocket angular motion is performed by changing the position of the rocket model with the help of a servo controlled by the Arduino UNO board. The connection of the servo drive to the board is described. The variation of the deflection angle of the model rudders is provided by a stepper motor controlled by the Arduino UNO board. The features of used devices are taken into account during building a simulation stand. A selection of a 3D- printer, which makes it possible to manufacture the elements of stand construction, has been carried out.


References

[1] Ilyukhin S.N. Developing control system for surface-to-air missile using log-magnitude diagram method. Molodezhnyy nauchno-tekhnicheskiy vestnik, 2012, no. 5. URL: http://ainsnt.ru/doc/458169.html (in Russ.).

[2] Ilyukhin S.N., Benevol’skiy S.V., Grabin V.V. Conceptual design of guided surface-to-air missile and dynamical analysis of its control system. Moscow, Bauman MSTU Publ., 2012 (in Russ.).

[3] Petin V.A. Proekty s ispol’zovaniem kontrollera Arduino [Project using Andruino controller]. Sankt-Petersburg, BKhV-Peterburg Publ., 2015 (in Russ.).

[4] Blum J. Exploring Arduino. Tools and techniques for engineering wizardry. Wiley, 2013. (Russ. ed.: Izuchaem Arduino. Instrumenty i metody tekhnicheskogo volshebstva. Sankt-Petersburg, BKhV-Peterburg Publ., 2015.)

[5] Ilyukhin S.N., Toporkov A.G., Koryanov V.V., et al. Actual aspects of control system development for advanced unmanned aerial vehicles. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2015, no. 9. DOI: 10.18698/2308-6033-2015-9-1450 URL: http://engjournal.ru/catalog/arse/adb/1450.html (in Russ.).

[6] Sagalaev G.V., Abramov V.V., Kuleznev V.V., et al. Spravochnik po tekhnologii izdeliy iz plastmass [Handbook on plastic products technology]. Moscow, Khimiya Publ., 2000 (in Russ.).

[7] Canessa E., Fonda C., Zennaro M., eds. Low-cost 3D printing for science, education and sustainable development. ICTP, 2013. (Russ. ed.: Dostupnaya 3D pechat’ dlya nauki, obrazovaniya i ustoychivogo razvitiya. Miramar, MTsTF Publ., 2013.)

[8] Golubev I.S., Svetlov V.S., eds. Proektirovanie zenitnykh upravlyaemykh raket [Guided surface-to-air missile engineering]. Moscow, MAI Publ., 2001 (in Russ.).

[9] Nikanorova M.D., Vedenichev I.V. Using the MATLAB.SIMULINK software suite for ballistic analysis. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2017, no. 10. DOI: 10.18698/2541-8009-2017-10-183 URL: http://ptsj.ru/catalog/arse/adbmc/183.html (in Russ.).

[10] Ilyukhin S.N., Klishin A.N. On-board computer efficiency evaluation of unmanned aerial vehicles (UAV) when implementing the targeting process. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 7. DOI: 10.18698/2308-6033-2018-7-1781 URL: http://engjournal.ru/catalog/arse/adb/1781.html

[11] Platunova A.V., Klishin A.N., Ilyukhin S.N. Special aspects of adaptive control laws formation for high precision aircraft. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 10. URL: http://engsi.ru/doc/851360.html (in Russ.).