Development of self-organizing algorithms for the navigation system of an unmanned aerial vehicle
Authors: Tan Wei, Bai Fan | |
Published in issue: #10(39)/2019 | |
DOI: 10.18698/2541-8009-2019-10-532 | |
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics |
|
Keywords: navigation, self-organization, short-term forecast, long-term forecast, Kalman filter, error compensation, mathematical model, linear trends |
|
Published: 04.10.2019 |
Inertial navigation systems (INS) with satellite corrections are the most accurate. However, sometimes it is not possible to use the correction signal from satellites, therefore, it is necessary to build a predictive model to compensate the error. The self-organization method allows one to build a predictive model of INS errors. The article analyzes the short-term and long-term forecast, typical models are proposed. The use of the model building algorithm for forecasting allows one to check the operability of the algorithm for generating the mathematical model of INS errors based on the self-organization method. Algorithmic correction of an autonomous INS (when an autonomous INS operation was preceded by a corrected mode) using an algorithm for constructing a predictive model, as well as self-organization and forecast algorithms using an INS error model, can improve the accuracy of UAV navigation definitions.
References
[1] Selezneva M.S. Razrabotka algoritmov kompleksirovaniya navigatsionnykh sistem letatel’nykh apparatov. Diss. kand. tekh. nauk [Development of algorithms for integration of aircraft navigation systems. Kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).
[2] Selezneva M.S., Ogloblina Yu.S. [Developing self-organizing model with high self-organizing degree]. Nauchnyy vzglyad. Tr. mezhd. nauch.-prakt. konf. [Scientific view. Proc. Int. Sci.-Pract. Conf.]. Moscow, MGOU Publ., 2015, pp. 250–253 (in Russ.).
[3] Astrom K.J., McAvoy T.J. Intelligent control: an overview and evaluation. Van Nostrand Reinhold, 1992.
[4] Shashurin V.D., Selezneva M.S., Neusypin K.A. The formation technology of the navigation complex action acceptor through the use of dynamic system synthesis. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 3, pp. 121–126 (in Russ.).
[5] Shen K., Selezneva M.S., Neusypin K.A., et al. A novel variable structure measurement system with intelligent components for flight vehicles. Metrol. Meas. Syst., 2017, vol. 24, no. 2, pp. 347–356.
[6] Noureldin A., Karamat T.B., Georgy J. Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer, 2013.
[7] Proletarskiy A.V., Selezneva M.S. [Aircraft measurement system with intelligent component]. Sovremennye aspekty fundamental’nykh nauk. Tr. 2-go mezhd. simp. [Modern aspects of fundamental sciences. Proc. 2nd Int. Symp.]. Moscow, MGOU Publ., 2015, pp. 196–199 (in Russ.).
[8] Kalman R.E., Ho Y.C., Narendra K.S. Controllability of linear dynamical systems. Contributions to the Theory of Differential Equations, 1963, vol. 1, no. 2, pp. 189–213.
[9] Shakhtarin B.I., Shen K., Neusypin K.A. Modification of the nonlinear Kalman filter in a correction scheme of aircraft navigation systems. J. Commun. Technol. Electron., 2016, vol. 61, no. 11, pp. 1252–1258. DOI: 10.1134/S1064226916110115 URL: https://link.springer.com/article/10.1134%2FS1064226916110115
[10] Klychnikov V.V., Selezneva M.S., Neusypin K.A., et al. Using the federal Kalman filter to correct aircraft navigation systems. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 9, pp. 428–432 (in Russ.).
[11] Proletarskiy A.V., Chzhan L., Selezneva M.S., et al. Methods of the state variables criterion of the degree of observability using of in the federative Kalman filter. Pribory i sistemy. Upravlenie, kontrol’, diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2018, no. 8, pp. 9–18 (in Russ.).
[12] Neusypin K.A., Selezneva M.S., Proletarskiy A.V., et al. [INS/GNSS modeling algorithm for integrated navigation system using identifiability degree criteria]. Yubileynaya XXV Sankt-Peterburgskaya Mezhd. konf. po integrirovannym navigatsionnym sistemam [Anniversary XXV Sankt-Petersburg Int. Conf. on integrated navigation systems]. Sankt-Petersburg, Kontsern TsNII "Elektropribor" Publ., 2018, pp. 30–34 (in Russ.).
[13] Neusypin K.A., Selezneva M.S., Kay Sh., et al. Development of a numerical criterion of the parameters identifiability degree for a nonlinear model of atmospheric aircraft. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 5, pp. 223–227 (in Russ.).