Quadrocopter control by the method of “flexible” kinematic trajectories
Authors: Mikhalin D.A. | |
Published in issue: #7(60)/2021 | |
DOI: 10.18698/2541-8009-2021-7-718 | |
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics |
|
Keywords: trajectory control of a quadrocopter, method of “flexible” kinematic trajectories, boundary value problem, inverse problem of dynamics, quaternions, mathematical modeling, quadrocopter, flight mechanics |
|
Published: 03.08.2021 |
Contrary to the popular belief that an increase in the trajectory update rate leads to an increase in the final accuracy in the presence of disturbing influences in problems of controlling the position of the aircraft center of mass, in order to build stable control systems it is necessary to understand the physical principles of flight that limit the possible range of these frequencies. In this paper, it is shown that for the control laws there is a natural upper limit of the refresh rate, exceeding which leads to a violation of stable motion. An algorithm for controlling a quadrocopter by the method of “flexible” kinematic trajectories, which takes into account the action of disturbing factors, is presented. The performance of the algorithm is shown under small external influences.
References
[1] Alvarez-Munoz J., Marchand N., Guerrero-Castellanos J.F., et al. Rotorcraft with a 3DOF rigid manipulator: quaternion-based modelling and real-time control tolerant to multi-body couplings. Int. J. Autom. Comput., 2018, vol. 15, no. 5 pp. 547–558. DOI: https://doi.org/10.1007/s11633-018-1145-8
[2] Kamel M., Verling S., Elkhatib O., et al. Voliro: an omnidirectional hexacopter with tiltable rotors. arXiv.org: website. URL: https://arxiv.org/abs/1801.04581 (accessed: 04.04.2021).
[3] Ehang 216 autonomous aerial vehicle (AAV). aerospace-techonogy.com: website. URL: https://www.aerospace-technology.com/projects/ehang-216-autonomous-aerial-vehicle (accessed: 31.05.2021).
[4] Burdakov S.F. Markov A.O. Upravlenie kvadrokopterom pri poletakh s malymi i srednimi peregruzkami [Control on a quadcopter in flights with small and average overload]. Sankt-Petersburg, Izd-vo Politekh. un-ta Publ., 2016 (in Russ.).
[5] Gen K.K., Chulin N.A. Stabilization algorithms for automatic control of the trajectory movement of quadcopter. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 5. URL: http://engineering-science.ru/doc/771076.html (in Russ.).
[6] Velishchanskiy M.A., Krishchenko A.P., A terminal control problem for the second order system with restrictions. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 8. URL: http://engineering-science.ru/doc/793667.html (in Russ.).
[7] Li T., Zhang Y., Gordon B.W. Passive and active nonlinear fault tolerant control of a quadrotor unmanned aerial vehicle based on sliding mode control technique. J. Syst. Sci. Control. Eng., 2013, vol. 277, no. 1, pp. 12–13. DOI: https://doi.org/10.1177%2F0959651812455293
[8] Gong X., Bai Y., Peng C., et a. Trajectory tracking control of a quad-rotor UAV based on command filtered backstepping. ICICIP, 2012, pp. 179–184. DOI: https://doi.org/10.1109/ICICIP.2012.6391413
[9] Dierks T, Jagannathan S. Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw., 2010, vol. 21, no. 1, pp. 50–66. DOI: https://doi.org/10.1109/TNN.2009.2034145
[10] Filimonov N.B., Filimonov A.B. Metody “gibkikh” traektoriy v zadachakh terminal’nogo upravleniya vertikal’nymi manevrami letatel’nykh apparatov [adaptable trajectory methods in problems of termination control of vertical aircraft manoeuvres]. V: Problemy upravleniya slozhnymi dinamicheskimi ob’’ektami aviatsionnoy i kosmicheskoy tekhniki [In: Problems of control on complex dynamic air- and spacecraft objects]. Moscow, Mashinostroenie Publ., 2015, pp. 51–101 (in Russ.).
[11] Nikitin D.A. Large scale systems control. UBS, 2017, no. 69, pp. 76–101 (in Russ.). (Eng. version: Autom. Remote. Control, 2019, vol. 80, no. 9, pp. 1717–1733. DOI: https://doi.org/10.1134/S0005117919090121)