On the interchangeability of sequences leading to an infinite decimal decomposition
Authors: Askerova A.A. | |
Published in issue: #8(25)/2018 | |
DOI: 10.18698/2541-8009-2018-8-356 | |
Category: Mathematics | Chapter: Computational Mathematics |
|
Keywords: formula, decimal decomposition, sequence of numbers, principles of the theory of limits, theory of real numbers, space, infinity, test of convergence |
|
Published: 08.08.2018 |
The article presents a complete justification for the fact that a sequence of numbers characterizing an irrational number can be replaced by an equivalent sequence leading to infinite decomposition. Based on the previously developed theory of real numbers, it is justified that to each real number can be associated with a fundamental sequence that will be its decimal decomposition, and vice versa. The conditions that a given decimal decomposition must meet are also given. In addition, the question of the influence of the rationality and irrationality of a number on the form of its decimal decomposition is considered, namely, that rational numbers have a periodic decomposition. The converse is also true.
References
[1] Sidnyaev N.I., Krylov D.A. Nepreryvnost’. Beskonechno malye i beskonechno bol’shie funktsii [Continuity. Infinitely large and infinitely small functions]. Moscow, Bauman Press, 2014, 38 p.
[2] Sidnyaev N.I., Nevskiy Yu.A., Sadykhov G.S. Beskonechno malye i beskonechno bol’shie: teoriya i praktika [Infinitely small and infinitely large: theory and practice]. Moscow, Bauman Press, 2015, 24 p.
[3] Natanson I.P. Teoriya funktsiy veshchestvennoy peremennoy [Theory of function of real variable]. Moscow, Leningrad, Izd-vo tekhniko-teoreticheskoy literatury publ., 1950, 399 p.
[4] Sidnyaev N.I., Gordeeva N.M., Popushina E.S., Rybdalova O.D. Rukovodstvo k resheniyu zadach po vektornomu analizu [Guidance to solving problems of vector analysis]. Moscow, Bauman Press, 2015, 51 p.
[5] Sidnyaev N.I., Sobolev S.K. Mechanisms for improvement of mathematical education in technical university. AlmaMater (Vestnik vysshey shkoly) [Alma Mater (High School Herald)], 2015, no. 6, pp. 5–14.
[6] Sidnyaev N.I., Tomashpol’skiy V.Ya. O matematike, matematikakh i kafedre “Vysshaya matematika” [On mathematics, mathematicians and “Advances mathematics” academic chair]. Moscow, Bauman Press, 2014, 258 p.
[7] Fikhtengol’ts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya. T. 1 [Course of differential and integral calculus. Vol. 1]. Moscow, Fizmalit publ., 2006, 660 p.
[8] Askerova A.A. Classical ideas about principles of the theory of limits. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2018, no. 3(20). Available at: http://ptsj.ru/catalog/math/compmath/275.html.
[9] Smirnov V.I. Kurs vysshey matematiki. T. 1 [Advanced mathematics course. Vol. 1]. Sankt-Petersburg, BKhV-Peterburg publ., 2008, 624 p.
[10] Kudryavtsev L.D., Kutasov A.D., Chekhlov V.I., Shabunin M.I. Sbornik zadach po matematicheskomu analizu. T. 1 [Problem book on mathematical analysisю Vol. 1]. Moscow, 2003, 362 p.
[11] Il’in V.A., Poznyak E.G. Osnovy matematicheskogo analiza. Ch. 1 [Fundamentals of mathematical analysis. P. 1]. Moscow, Fizmatlit publ., 2005, 648 p.