|

Single-joint spherical pendulum mathematical modeling in spherical coordinate system

Authors: Zaika V.V., Maslennikov A.L.
Published in issue: #9(38)/2019
DOI: 10.18698/2541-8009-2019-9-522


Category: Mechanics | Chapter: Biomechanics

Keywords: spherical pendulum, mathematical spherical pendulum, physical spherical pendulum, dissipation, modeling, mathematical model, numerical ODE integration, Runge-Kutta method
Published: 17.09.2019

Mathematical model of the n-link spherical pendulum could be used as a mathematical model of a single or a n-link human joint. Depending on practical problem formulation spherical pendulum could be considered as mathematical pendulum or as physical pendulum, where the last one is the more adequate model of a human joint. Consequently, the derivation of such mathematical models is required. In this paper the derivation of mathematical model of the mathematical and the physical single-joint spherical pendulum in spherical coordinate system is shown. Two cases are considered for both systems: without and with dissipation. Numerical simulation is realized utilizing explicit Runge-Kutta 4-th order method.


References

[1] Ryabina K.E., Isaev A.P. Biomechanics of erect posture maintaining (review of equilibrium control models). Vestnik YuUrGU. Seriya Obrazovanie, zdravookhranenie, fizicheskaya kul’tura [Bulletin of the South Ural State University. Series: Education, health, physical culture.], 2015, vol. 15, no. 4, pp. 93–98. DOI: 10.14529/ozfk150417 URL: http://vestnik.istis.ru/images/2015-4/93-98.pdf (in Russ.).

[2] Dubrovskiy V.I., Fedorova V.N. Biomekhanika [Biomechanics]. Moscow, VLADOS-PRESS Publ., 2003 (in Russ.).

[3] Olsson M.G. Spherical pendulum revisited. Am. J. Phys., 1981, vol. 49, no. 6, pp. 531–534. DOI: 10.1119/1.12666 URL: https://aapt.scitation.org/doi/10.1119/1.12666

[4] Miles J.W. Resonant motion of a spherical pendulum. Physica D, 1984, vol. 11, no. 3, pp. 309–323. DOI: 10.1016/0167-2789(84)90013-7 URL: https://www.sciencedirect.com/science/article/pii/0167278984900137

[5] Awrejcewicz J. Classical mechanics. Dynamics. Springer-Verlag, 2012.

[6] Sommerfeld A. Mechanik. Revidierte Auflage Publ., 1944. (Russ. ed.: Mekhanika. Moscow, Regulyarnaya i khaoticheskaya dinamika Publ., 2001.)

[7] Amosov A.A., Dubinskiy Yu.A. Kopchenova N.V. Vychislitel’nye metody [Numerical methods]. Moscow, Lan’ Publ., 2014 (in Russ.).

[8] Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M. Chislennye metody [Numerical methods]. Moscow, Binom. Laboratoriya znaniy Publ., 2017 (in Russ.).

[9] Gantmakher F.R. Lektsii po analiticheskoy mekhanike [Lectures on analytical mechanics]. Moscow, Nauka Publ., 1966 (in Russ.).

[10] Appel’ P. Teoreticheskaya mekhanika. T. 1. Statika. Dinamika tochki [Theoretical mechanics. Vol. 1. Statics. Particle dynamics]. Moscow, Fizmatlit Publ., 1960 (in Russ.).

[11] Prokhorov A.M., ed. Fizicheskaya entsiklopediya. T.4 [Physical encyclopedia. Vol. 4]. Moscow, Bol’shaya Rossiyskaya entsiklopediya Publ., 1994 (in Russ.).