Investigation of liquid sloshing in the tank closed with the movable rigid plate
Authors: Polyukhin A.S. | |
Published in issue: #6(23)/2018 | |
DOI: 10.18698/2541-8009-2018-6-335 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body |
|
Keywords: oscillation, ideal fluid, potential flow, Lagrange-Cauchy integral, hydroelasticity, velocity potential, Fourier method, linear model, natural oscillation frequency |
|
Published: 21.06.2018 |
The article considers the linear approximation of the plane problem of the ideal fluid small oscillation in the rectangular tank, whose lateral rigid wall can turn about the horizontal axis. Because of the selected assumptions we have constructed a simplified linearized model of the examined system. Such model can be used as the simplest form of the river dam or tanker with a flexible wall. The authors have constructed an approximate solution of the boundary value problem of fluid small oscillation in the rigid rectangular tank closed on one side with the rigid spring-loaded wall. We have obtained an equation allowing us to determine the natural oscillation frequency of the considered system in linear approximation.
References
[1] Feodos’yev V.I. Soprotivlenie materialov [Strength of materials]. Moscow, Bauman Press, 2016, pp. 440–445.
[2] Timoshenko S.P. Kolebaniya v inzhenernom dele [Oscillations in engineering]. Moscow, Mashinostroenie publ., 1985, pp. 444–455.
[3] Balabukh L.I. Nekotorye tochnye resheniya zadachi o kolebaniyakh zhidkosti v uprugikh obolochkakh [Some accurate solutions of the problem of liquid oscillations in elastic shells]. Tr. V Vses. konf. po teorii plastin i obolochek [Proc. V Russ. Conf. on Plates and Shells Theory]. Moscow, 1965, pp. 68–72.
[4] Leybenzon L.S. O natural’nykh periodakh kolebaniy plotiny, podpirayushchey reku [On natural periods of the river dam oscillations]. Sb. trudov AN SSSR. T.1 [Proc. USSR Academy of Science. Vol. 1]. Moscow, AN SSSR publ., 1951, pp. 157–161.
[5] Pozhalostin A.A. Osesimmetrichnye kolebaniya uprugikh bakov s zhidkost’yu [Axial-symmetrical oscillations of flexible tank with liquid]. Tr. VII Vses. konf. po teorii obolochek i plastinok [Proc. VII Russ. Conf. on Shells and Plates Theory]. Moscow, Nauka publ., 1970, pp. 483–487.
[6] Pozhalostin A.A. Postroenie sistemy garmonicheskikh funktsiy dlya rascheta osesimmetrichnykh kolebaniy zhidkosti v uprugom tsilindricheskom bake s zhidkost’yu [Solution of harmonic functions system for calculating liquid oscillations in flexible cylindrical tank]. Moscow, VIMI publ., 1987, рр. 71–74.
[7] Pozhalostin A.A., Goncharov D.A. Free axisymmetric oscillations of two-layered liquid with the elastic separator between layers in the presence of surface tension forces. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 12(24). Available at: http://engjournal.ru/catalog/eng/teormech/1147.html.
[8] Kochin N.E., Kibel’ I.A., Roze N.V. Teoreticheskaya gidromekhanika. Ch. 1 [Theoretical hydromechanics. P. 1]. Moscow, Al’yans publ., 2016, pp. 31–34.
[9] Nikitin N.N. Kurs teoreticheskoy mekhaniki [Theoretical mechanics course]. Sankt-Petersburg, Lan’ publ., 2016, pp. 356–363.
[10] Kolesnikov K.S., Dubinin V.V. Kurs teoreticheskoy mekhaniki [Theoretical mechanics course]. Moscow, Bauman Press, 2017, pp. 582–583.
[11] Kochin N.E. Vektornoe ischislenie i nachala tenzornogo ischisleniya [Vector calculus and elements of tensor analysis]. Moscow, URSS publ., 2017, pp. 177–178.