Development and investigation of the submersible vertical motion control system. trim difference loop synthesis
Authors: Gostilovich S.O., Gostilovich A.O. | |
Published in issue: #5(22)/2018 | |
DOI: 10.18698/2541-8009-2018-5-305 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems |
|
Keywords: submersible, mathematical model, trim difference, vertical motion, linearized model, feedback, proportional plus reset controller, adaptive system, transfer-function, the worst case of steadiness |
|
Published: 07.05.2018 |
On the basis of using the simplified mathematical model of the submersible by means of synthesis frequency methods we have constructed a trim angle control loop. While constructing a control loop we added position and velocity feedback. The investigation shows small dependence of the attitude position loop steadiness through the trim difference from the linearization point on the trim angle. The article justifies the application of the proportional plus reset controller with the integration limit for eliminating the steady-state errors caused by the input effect and external disturbances. In order to determine the proportional plus reset controller parameters we have used a simulation technique. The authors suggest an adaptive law of integration limit formation depending on the input effect. We simulate the operation of the trim difference control loop with due consideration of nonlinearity of the submersible model.
References
[1] Grumondz V.T., Polovinkin V.V., Yakovlev G.A. Teoriya dvizheniya dvusrednykh apparatov. Matematicheskie modeli i metody issledovaniya [Movement theory of two-medium apparatus. Mathematical models and research methods]. Moscow, Vuzovskaya kniga publ., 2012, 644 p.
[2] Grumondz V.T., Yakovlev G.A. Algoritmy aerogidrodinamicheskogo proektirovaniya [Algorithms of aerohydrodynamic engineering]. Moscow, MAI publ., 1994, 304 p.
[3] Kiselev L.V., Medvedev A.V. Research of AUV dynamic features on basis of processes typology and fuzzy control models. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2008, no. 1(5), pp. 16–23.
[4] Kiselev L.V., Medvedev A.V. Dynamics models and control algorithms of autonomous underwater robot in trajectory inspection of the physical fields anomalies. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2011, no. 1(11), pp. 24–31.
[5] Kiselev L.V., Medvedev A.V. On parametric relation of hydrodynamics and motion stability of the autonomous underwater robot. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2013, no. 1(15), pp. 17–22.
[6] Kiselev L.V., Medvedev A.V. Comparative analysis and the optimization of the autonomous underwater robots dynamic properties of different projects and configurations. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2012, no. 1(13), pp. 24–35.
[7] Lukomskiy Yu.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnymi ob’’ektami [Control systems of marine vehicles]. Leningrad, Sudostroenie publ., 1988, 272 p.
[8] Gostilovich S.O. Designing and vertical testing of the submersible motion control system. The mathematical model of the submersible. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2018, no. 2(19). URL: http://ptsj.ru/catalog/edu/phil/254.html.
[9] Sobolev G.V. Upravlyaemost’ korablya i avtomatizatsiya sudovozhdeniya [Ship controllability and marine navigation automation]. Leningrad, Sudostroenie publ., 1976, 477 p.
[10] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo upravleniya [Automatic control system theory]. Sankt-Peterburg, Professiya publ., 2007, 752 p.