Recommendations for providing the protection of the medium weight class robotics
Authors: Lakutin N.A., Tereshin S.S., Baburin N. | |
Published in issue: #6(23)/2018 | |
DOI: 10.18698/2541-8009-2018-6-339 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems |
|
Keywords: mobile robots, robotics, destruction means, protection, survival probability, piercing performance, branches of troops |
|
Published: 29.06.2018 |
The article estimates the robotics protection when fulfilling a typical mission. It introduces the protection computation through the robotics survival probability under the fire of the most probable destruction means taking into account their effective fire range. Based on the analysis of piercing performances of the considered destruction means we have obtained the results of the robotics armouring for ensuring the sufficient protection, which also allow maintaining the buoyancy capability, as well as the following approximate data on the robotics mass and dimensions. We also show alternative options of enhancing the protection and construction solutions in addition to building-up the monolithic thickness of the armoured plates.
References
[1] MCOE supplemental manual 3-90 force structure reference data. Brigade combat teams, 2015, pp. 69–165.
[2] Korablin V. Vooruzhenie i boepripasy OBT i BMP nekotorykh zarubezhnykh stran [Main battle tank and IFV weapon and ammunition]. Available at: http://militaryarticle.ru/zarubezhnoe-voennoe-obozrenie/2001-zvo/6739-vooruzhenie-i-boepripasy-obt-i-bmp-nekotoryh (accessed 05 November 2017).
[3] 40mm CTAS armour piercing fin stabilised discarding sabot – tracer (APFSDS-T). Available at: http://www.thinkdefence.co.uk/cased-telescoped-armament-system/40mm-ctas-armour-piercing-fin-stabilised-discarding-sabot-tracer-apfsds-t/ (accessed 05 November 2017).
[4] Protivotankovye vozmozhnosti “Vizelya Mk20” i “Mardera-1” [Antitank capabilities of “Vizel’ Mk20” and “Marder-1”]. Available at: https://rostislavddd.livejournal.com/298964.html (accessed 05 November 2017).
[5] Chistyakov E., Kupryunin D., Alekseev M., Kimaev A. Efficiency of military equipment add-on protection. Tekhnika i vooruzheniya vchera, segodnya, zavtra, 2017, no. 2, pp. 2–12.
[6] Kornilov I.V., Maev S.A., Mashkov K.Yu., Panteleev A.L. Foreign military robotic complexes and requirements to them. Trudy NAMI, 2015, no. 263, pp. 65–86.
[7] Grigoryan V.A., ed. Zashchita tankov [Protection of tanks]. Moscow, Bauman Press, 2007, 327 p.
[8] Povyshenie zashchishchennosti tankov [Improving tank protection]. Available at: http://zvo.su/suhoputnye-voyska/povyshenie-zaschischennosti-tankov.html (accessed 05 November 2017).
[9] Belyakov V.V., ed. Vezdekhodnye transportno-tekhnologicheskie mashiny [Off-road transport technological machines]. Nizhniy Novgorod, TALAM publ., 2004, 960 p.
[10] Bekker M.G. Introduction to terrain–vehicle systems. The University of Michigan Press, 1969, 503 p.
[11] Wong J.Y. Terramechanics and off-road vehicles. Elsevier, 2010, 463 p.
[12] Skotnikov V.A., Ponomarev A.V., Klimanov A.V. Prokhodimost’ mashin [Machines flotation]. Minsk, Nauka i tekhnika publ., 1982, 328 p.