Numerical solution of differential equations system of two gravitating bodies by the Euler method

Authors: Belkina E.V., Loginova A.A.
Published in issue: #1(30)/2019
DOI: 10.18698/2541-8009-2019-1-428

Category: Physics | Chapter: Mathematical physics

Keywords: numerical integration, Euler method, Runge rule, law of universal gravitation, differential equations, gravitational problem, interaction of two bodies, error estimate
Published: 23.01.2019

A system of 12 differential equations describing the interaction of two gravitating bodies was integrated in this work. The considered problem is a special case of two bodies gravitational problem. To account for the forces acting on the body, Newton’s law of universal gravitation is used. Graphs of coordinates and speeds depending on time are obtained. The estimation of numerical integration error is performed using the Runge rule. The problem was solved for specific values of input parameters; in the general case, it is possible to find the solution for different source data depending on the task.


[1] Aleksandrov Yu.V. Nebesnaya mekhanika [Celestial mechanics]. Khar’kov, V.N. Karazin Kharkiv National University, 2006. (in Russ.)

[2] Gordin V.A. Differentsial’nye i raznostnye uravneniya [Differential and finite-difference equations]. Moscow, HSE Publ., 2016. (in Russ.)

[3] Beletskiy V.V. Ocherki o dvizhenii kosmicheskikh tel [Essay about space body movement]. Moscow, Nauka Publ., 1977. (in Russ.)

[4] Duboshin N.G. Nebesnaya mekhanika. Analiticheskie i kachestvennye metody [Celestial mechanics. Analytical and qualitative methods]. Moscow, Nauka Publ., 1978. (in Russ.)

[5] Valov A.V. Chislennye metody resheniya uravneniy dlya inzhenerov [Numerical methods of solving equations for engineers]. Chelyabinsk, SUSU Publ., 2012. (in Russ.)

[6] Fedorenko Yu.V., Aksenov S.A. Description of the spacecraft movement by means of differential equations. Novye informatsionnye metody v avtomatizirovannykh sistemakh, 2014, no. 17, pp. 258–271. (in Russ.)

[7] Fedotov A.A., Khrapov P.V. Chislennye metody [Numerical methods]. Moscow, Bauman MSTU Publ., 2012. (in Russ.)

[8] Verzhbitskiy V.M. Osnovy chislennykh metodov [Fundamentals of numerical methods]. Moscow, Direkt-Media Publ., 2013. (in Russ.)

[9] Mathews J.H., Fink K.D. Numerical methods using Matlab. Prentice Hall, 1998. (Russ. ed.: Chislennye metody. Ispol’zovanie MATLAB. Moscow, Sankt-Petersburg, Kiev, Vil’yams Publ., 2001.)

[10] Myshenkov V.I., Myshenkov E.V. Chislennye metody. Ch. 2. Chislennoe reshenie obyknovennykh differentsial’nykh uravneniy [Numerical methods. P. 2. Numerical solution of common differential equations]. Moscow, MGUL Publ., 2005. (in Russ.)