Numerical analysis of vortex structures in active matter
Authors: Belyaev A.N. | |
Published in issue: #9(62)/2021 | |
DOI: 10.18698/2541-8009-2021-9-736 | |
Category: Physics | Chapter: Mathematical physics |
|
Keywords: numerical modeling, active matter, turbulence, reverse cascade, enlargement of structures, particles in gas, nonlinear dynamics, energy spectra |
|
Published: 20.09.2021 |
By means of mathematical modeling the author studied the features of the development of vortex structures formed by the action of the Stokes force from the side of self-propelled active particles immersed in a liquid. A two-phase model is proposed, within which the carrier medium is a continuum, and each particle obeys the given laws of motion. Based on the simulation results analysis, it can be concluded that at the initial moment of time, the main part of the flow kinetic energy falls on the scale corresponding to the average distance between microparticles, and at the decay stage — to the characteristic size of vortex structures developing on the scale of the region of particle motion. The effect of the reverse cascade was also discovered, which consists in the fact that the vortex structures become larger as a result of interaction with each other.
References
[1] Frisch U. Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, 1995.
[2] Bialké J., Speck T., Löwen H. Crystallization in a dense suspension of self-propelled particles. Phys. Rev. Lett., 2012, vol. 108, no. 16, art. 168301. DOI: https://doi.org/10.1103/physrevlett.108.168301
[3] Purcell E.M. Life at low Reynolds number. Am. J. Phys., 1977, vol. 45, no. 3. DOI: https://doi.org/10.1119/1.10903
[4] Bourgoin M., Kervil R., Cottin-Bizonne C. et al. Kolmogorovian active turbulence of a sparse assembly of interacting Marangoni surfers. Phys. Rev. X, 2020, vol. 10, no. 2, art. 021065. DOI: https://doi.org/10.1103/PhysRevX.10.021065
[5] Dunkel J., Heidenreich S., Drescher K. et al. Fluid dynamics of bacterial turbulence. Phys. Rev. Lett., 2013, vol. 110, no. 22, art. 228102. DOI: https://doi.org/10.1103/PhysRevLett.110.228102
[6] Kourbane-Houssene M., Erignoux C., Bodineau T. et al. Exact hydrodynamic description of active lattice gases. Phys. Rev. Lett., 2018, vol. 120, no. 26, art. 268003. DOI: https://doi.org/10.1103/PhysRevLett.120.268003
[7] Klamser J.U., Kapfer S.C., Krauth W. Thermodynamic phases in two-dimensional active matter. Nat. Commun., 2018, vol. 9, art. 5045. DOI: https://doi.org/10.1038/s41467-018-07491-5
[8] Sadjadi Z., Shaebani M.R., Rieger H. et al. Persistent-random-walk approach to anomalous transport of self-propelled particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2015, vol. 91, no. 6, art. 062715. DOI: https://doi.org/10.1103/physreve.91.062715
[9] Shaebani M.R., Sadjadi Z., Sokolov I.M. et al. Anomalous diffusion of self-propelled particles in directed random environments. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2014, vol. 90, no. 3, art. 030701. DOI: https://doi.org/10.1103/physreve.90.030701
[10] Levis D., Berthier L. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2014, vol. 89, no. 6, art. 062301. DOI: https://doi.org/10.1103/physreve.89.062301
[11] Najafi J., Shaebani M.R., John T. et al. Flagellar number governs bacterial spreading and transport efficiency. Sci. Adv., 2018, vol. 4, no. 9, art. eaar6425. DOI: https://doi.org/10.1126/sciadv.aar6425
[12] Hafner A.E., Santen L., Rieger H. et al. Run-and-pause dynamics of cytoskeletal motor proteins. Sci. Rep., 2016, vol. 16, no. 6, art. 37162. DOI: https://doi.org/10.1038/srep37162
[13] Toner J., Tu Y. Folks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E, 1998, vol. 58, no. 4, art. 4828. DOI: https://doi.org/10.1103/PhysRevE.58.4828
[14] Toner J., Tu Y., Ramaswamy S. Hydrodynamics and phases of flocks. Ann. Phys., 2005, vol. 318, no. 1, pp. 170–244. DOI: https://doi.org/10.1016/j.aop.2005.04.011
[15] Ramaswamy S. The mechanics and statistics of active matter. Annu. Rev. Cond. Mat. Phys., 2010, vol. 1, 323–345. DOI: http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
[16] Swift J., Hohenberg P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 1977, vol. 15, no. 1, art. 319. DOI: https://doi.org/10.1103/PhysRevA.15.319
[17] Stomka J., Dunkel J. Generalized Navier-Stokes equations for active suspensions. Eur. Phys. J. Special Topics, 2015, vol. 224, no. 7, pp. 1349–1358. DOI: http://dx.doi.org/10.1140/epjst/e2015-02463-2
[18] Linkmann M., Boffetta G., Marchetti M.C. et al. Phase transition to large scale coherent structures in two-dimensional active matter turbulence. Phys. Rev. Lett., 2019, vol. 122, no. 21, art. 214503. DOI: https://doi.org/10.1103/physrevlett.122.214503
[19] Stomka J., Dunkel J. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids. PNAS, 2017, vol. 114, no. 9, pp. 2119–2124. DOI: https://doi.org/10.1073/pnas.1614721114
[20] McGrattan K., McDermott R., Weinschenk C. et al. Fire dynamics simulator, technical reference guide. NIST, 2013.
[21] Deardorff J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol., 1980, vol. 18, no. 4, pp. 495–527. DOI: https://doi.org/10.1007/BF00119502
[22] Pope S.B. Turbulent flows. Cambridge University Press, 2000.
[23] Sweet R.A. Direct methods for the solution of Poisson’s equation on a staggered grid. J. Comput. Phys., 1973, vol. 12, no. 3, pp. 422–428. DOI: https://doi.org/10.1016/0021-9991(73)90164-2
[24] Crowe C., Sommerfeld M., Tsuji Y. Multiphase flows with droplets and particles. CRC Press, 1998.
[25] Ivanov M.F., Kiverin A.D., Shevelkina E.D. Evolution of vertex disturbances at various stages of turbulent flows. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, № 8. DOI: http://dx.doi.org/10.18698/2308-6033-2013-8-870