Finding the particles distribution function based on the Fokker — Planck equation for the laser plasma
Authors: Savelyev T.A., Savritskiy A.N., Nazaryan A.M. | |
Published in issue: #10(87)/2023 | |
DOI: 10.18698/2541-8009-2023-10-944 | |
Category: Physics | Chapter: Plasma physics |
|
Keywords: laser plasma, electron and ion acceleration, particles collisions, particles interaction, distribution functions, Fokker — Planck equation, Rosenbluth — Trubnikov potentials, aircraft |
|
Published: 06.12.2023 |
With high laser intensities of more than 1016–1018 W/cm2, it is necessary to take into account the relativistic effects, since the energy of electrons oscillating in the laser radiation field is comparable to the relativistic energies. The fast particles distribution function could be obtained by solving the Fokker — Planck equation. Since distribution function of the plasma particles in a laser plume is close to the Maxwellian, the Rosenbluth — Trubnikov potentials were used to describe the diffusion and friction coefficients in the Fokker — Planck equation. Features of the Fokker — Planck equation were considered, and a unique solution to the compiled system of equations was obtained.
References
[1] Chirkov A.Yu., Ryzhkov S.V. Impact of powerful thermal and neutron fluxes on the structural elements of fusion and fission reactors. Physics of Atomic Nuclei, 2018, vol. 81, pp. 1432-1440. http://doi.org/10.1134/s2079562917050050
[2] Kuzenov V.V., Ryzhkov S.V. Thermophysical parameter estimation of a neutron source based on the action of broadband radiation on a cylindrical target. Fusion Science and Technology, 2023, vol. 79, pp. 399–406. http://doi.org/10.1080/15361055.2022.2112037
[3] Kuzenov V.V., Ryzhkov S.V. Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure. Physics of Plasmas, 2019, vol. 26, pp. 092704. http://doi.org/10.1063/1.5109830
[4] Chirkov A.Yu., Ryzhkov S.V., Bagryansky P.A., Anikeev A.V. Plasma kinetics models for fusion systems based on the axially-symmetric mirror devices. Fusion Science and Technology, 2011, vol. 59, no. 1T, pp. 39–42. http://doi.org/10.13182/FST11-A11570
[5] Kuzenov V.V., Ryzhkov S.V. Numerical simulation of pulsed jets of a high-current pulsed surface discharge. Computational Thermal Sciences, 2020, vol. 13, pp. 45–56. http://doi.org/10.1615/ComputThermalScien.2020034742
[6] Ryzhkov S.V. Modeling of plasma physics in the fusion reactor based on a field-reversed configuration. Fusion Science and Technology, 2009, vol. 55, no. 2T, pp. 157–161. http://doi.org/10.13182/FST09-A7004
[7] Kuzenov V.V., Ryzhkov S.V. Numerical modeling of the interaction of a magnetic-inertial thermonuclear fusion target with plasma and laser drivers. High Temperature, 2022, vol. 60, pp. S7–S15. http://doi.org/10.1134/S0018151X21040143
[8] Kuzenov V.V., Ryzhkov S.V. Estimation of the neutron generation in the combined magneto-inertial fusion scheme. Physica Scripta, 2021, vol. 96, pp. 125613. http://doi.org/10.1088/1402-4896/ac2543
[9] Ryzhkov S.V. Comparison of a deuterium-helium-3 FRC and mirror trap for plasma confinement. Fusion Science and Technology, 2007, vol. 51, no. 2T, pp. 190–192. http://doi.org/10.13182/FST07-A1347
[10] Mozgovoy A.G., Romadanov I.V., Ryzhkov S.V. Formation of a compact toroid for enhanced efficiency. Physics of Plasmas, 2014, vol. 21, art. 022501. http://doi.org/10.1063/1.4863452
[11] Kuzenov V.V., Ryzhkov S.V. Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes. Journal of Physics: Conference Series, 2017, vol. 815. https://doi.org/10.1088/1742-6596/815/1/012024
[12] Kuzenov V.V., Ryzhkov S.V. Evaluation of the possibility of ignition of a hydrogen-oxygen mixture by erosive flame of the impulse laser. Laser Physics, 2019, vol. 29, pp. 096001. https://doi.org/10.1088/1555-6611/ab342d
[13] Ryzhkov S.V. Magneto-Inertial Fusion and Powerful Plasma Installations (A Review). Applied Sciences, 2023, vol. 13, p. 6658. https://doi.org/10.3390/app13116658
[14] Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. Computational and experimental modeling in magnetoplasma aerodynamics and high-speed gas and plasma flows (A Review). Aerospace, 2023, vol. 10, p. 662. https://doi.org/10.3390/aerospace10080662
[15] Kuzenov V.V., Ryzhkov S.V. Plasma dynamics simulation of the interaction of pulsed plasma jets. Physics of Atomic Nuclei, 2018, vol. 81, pp. 1460–1464. http://doi.org/10.1134/S106377881811011X
[16] Kuzenov V.V., Ryzhkov S.V., Frolko P.A., Shumaev V.V. Mathematical model of a pulsed plasma engine with preionization by a helicon discharge. Trudy MAI, 2015, no. 82. (In Russ.). URL: https://trudymai.ru/upload/iblock/24a/kuzenov-ryzhkov-shumaev-frolko_rus.pdf?lang=ru&issue=82 (accessed May 15, 2023).
[17] Ryzhkov S.V., Khvesyuk V.I., Ivanov A.A. Progress in an alternate confinement system called a FRC. Fusion Science and Technology, 2018, vol. 43(1T), pp. 304–308. https://doi.org/10.13182/FST03-A11963620
[18] Ryzhkov S.V., Chirkov A.Y., Ivanov A.A. Analysis of the compression and heating of magnetized plasma targets for magneto-inertial fusion. Fusion Science and Technology, 2013, vol. 63, pp. 135–138. doi.org/10.13182/FST13-A16889
[19] Chirkov A.Yu., Ryzhkov S.V., Bagryanskiy P.A., Anikeev A.V. Fusion modes of an axially symmetrical mirror trap with the high power injection of fast particles. Plasma Physics Reports, 2012, vol. 38, pp. 1025-1031.
[20] Kuzenov V.V., Ryzhkov S.V. Numerical simulation of the effect of laser radiation on matter in an external magnetic field. Journal of Physics: Conference Series, 2017, vol. 830. https://doi.org/10.1088/1742-6596/830/1/012124
[21] Karney C.F.F. Fokker-Planck and quasilinear codes. Computer Physics Reports, 1986, vol. 4 (3–4), pp. 183–244. https://doi.org/10.1016/0167-7977(86)90029-8
[22] Rosenbluth M.N., MacDonald W.M., Judd D.L. Fokker-Planck equation for an inverse-square force. Phys. Rev., 1957, vol. 107, pp. 1–6. https://doi.org/10.1103/PhysRev.107.1
[23] Trubnikov B.A. Reducing the kinetic equation in the case of coulomb collisions to differential form. Journal of experimental and theoretical physics, 1958, vol. 34, pp. 1341–1343. (In Russ.).
[24] Devaney J.J., Stein M.L. Plasma Energy Deposition from Nuclear Elastic Scattering. Nuclear Science and Engineering, 1971, vol. 46 (3), pp. 323–333. https://doi.org/10.13182/nse71-a22370
[25] Voprosy teorii plazmy. Kulonovskie stolknoveniya v polnost’yu ionizovannoy plazme [Questions of plasma theory. Coulomb collisions in fully ionized plasma]. Ed. Leontovich M.A. Moscow, Atomizdat Publ., 1964, issue 4, pp. 81–187. (In Russ.).
[26] Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. Calculation of heat transfer and drag coefficients for aircraft geometric models. Applied Sciences, 2022, vol. 12 (21), p. 11011. https://doi.org/10.3390/app122111011
[27] Ryzhkov S.V. Compact toroid and advanced fuel — together to the Moon?! Fusion Science and Technology, 2005, vol. 47, no. 1T, pp. 342–344. http://doi.org/10.13182/FST05-A684
[28] Shumeiko A.I., Telekh V.D., Ryzhkov S.V. Probe diagnostics and optical emission spectroscopy of wave plasma source exhaust. Symmetry, 2022, vol. 14 (10), art. 1983. http://doi.org/10.3390/sym14101983
[29] Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. The adaptive composite block-structured grid calculation of the gas-dynamic characteristics of an aircraft moving in a gas environment. Mathematics, 2022, vol. 10, art. 2130. http://doi.org/10.3390/math10122130
[30] Ryzhkov S.V., Chirkov A.Yu. Alternative fusion fuels and systems. CRC Press, Taylor & Francis Group, 2018, 200 p.
[31] Rudinskii A.V., Yagodnikov D.A., Ryzhkov S.V., Onufriev V.V. Features of intrinsic electric field formation in low-temperature oxygen–methane plasma. Technical Physics Letters, 2021, vol. 47, iss. 7, pp. 520–523. https://doi.org/10.1134/S1063785021050278
[32] Ryzhkov S.V. Modeling of thermophysical processes in a magnetic thermonuclear engine. Thermal Processes in Engineering, 2009, no. 9, pp. 397–400. (In Russ.).
[33] Klimenko G.K., Kuzenov V.V., Lyapin A.A., Ryzhkov S.V. Raschet, modelirovanie i proektirovanie generatorov nizkotemperaturnoy plazmy [Calculation, modeling and design of low-temperature plasma generators]. Moscow, BMSTU Press, 2021, 264 p. (In Russ.).